

BIOLOGICALLY INSPIRED COOPERATIVE
COMPUTING

IFIP - The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World
Computer Congress held in Paris the previous year. An umbrella organization for
societies working in information processing, IFIP's aim is two-fold: to support
information processing within its member countries and to encourage technology transfer
to developing nations. As its mission statement clearly states,

IFIP's mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development,
exploitation and application of information technology for the benefit
of all people.

[FIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates
through a number of technical committees, which organize events and publications.
IFIP's events range from an international congress to local seminars, but the most
important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers may
be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working
group and attendance is small and by invitation only. Their purpose is to create an
atmosphere conducive to innovation and development. Refereeing is less rigorous and
papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of selected
and edited papers.

Any national society whose primary activity is in information may apply to become a full
member of IFIP, although full membership is restricted to one society per country. Full
members are entitled to vote at the annua! General Assembly, National societies
preferring a less committed involvement may apply for associate or corresponding
membership. Associate members enjoy the same benefits as full members, but without
voting rights. Corresponding members are not represented in IFIP bodies. Affiliated
membership is open to non-national societies, and individual and honorary membership
schemes are also offered.

BIOLOGICALLY INSPIRED
COOPERATIVE
COMPUTING

IFIP 19th World Computer Congress^
TC 10: 1st IFIP International Conference on
Biologically Inspired Computing^ August 21-24, 2006,
Santiago, Chile

Edited by

Yi Pan
Georgia State University, USA

Franz J. Rammig
Universitat Paderborn, Cermany

Hartmut Schmeck
Universitat Karisruhe (TIH), Germany

Mauricio Solar
Universidad de Santiago de Ctiile, Cliile

Springer

Library of Congress Control Number: 2006927830

Biologically Inspired Cooperative Computing

Edited by Y. Pan, F. Rammig, H. Schmeck, and M. Solar

p. cm. (IFIP International Federation for Information Processing, a Springer Series in
Computer Science)

ISSN; 1571-5736 / 1861-2288 (Internet)
ISBN: 10: 0-387-34632-5
ISBN: 13: 9780-387-34632-8
elSBN; 10: 0-387-34733-X

Printed on acid-free paper

Copyright © 2006 by International Federation for Information Processing.
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1
springer.com

Preface

In the world of information technology, it is no longer the computer in the
classical sense where the majority of IT applications is executed; computing is
everywhere. More than 20 billion processors have already been fabricated and the
majority of them can be assumed to still be operational. At the same time, virtually
every PC worldwide is connected via the Internet. This combination of traditional
and embedded computing creates an artifact of a complexity, heterogeneity, and
volatility unmanageable by classical means.

Each of our technical artifacts with a built-in processor can be seen as a ''Thing
that Thinks", a term introduced by MIT's Thinglab. It can be expected that in the
near future these billions of Things that Think will become an ''Internet of Things", a
term originating from ETH Zurich. This means that we will be constantly surrounded
by a virtual "organism" of Things that Think. This organism needs novel, adequate
design, evolution, and management means which is also one of the core challenges
addressed by the recent German priority research program on Organic Computing.

A new paradigm in computing is to take many simple autonomous objects or
agents and let them jointly perform a complex task, without having the need for
centralized control. In this paradigm, these simple objects interact locally with their
environment using simple rules. An important inspiration for this model is nature
itself, where many such systems can be found. Applications include optimization
algorithms, communications networks, scheduling and decision making, supply-
chain management, and robotics.

There are many disciplines involved in making such systems work: from
artificial intelligence to energy aware systems. Often these disciplines have their own
field of focus, have their own conferences, or only deal with specialized sub-
problems (e.g. swarm intelligence, biologically inspired computation, sensor
networks). The IFIP Conference on Biologically Inspired Cooperative Computing is
a first attempt to bridge this separation of the scientific community.

At the same time it is the dignified forum to celebrate the 30th anniversary of
TCIO, IFIP's Technical Committee on Computer Systems Technology. This unique
conference brings together the various fields covered by the individual working
groups of TCIO and opens the perspective to explore boundaries.

Combining the areas of expertise of TCIO's working groups, a highly attractive
program could be compiled. The Working Group 10.1 {Computer-aided Systems
Theory, Chair: Charles Rattray, UK) brought in the point of view of Modeling and
Reasoning about Collaborative Self-Organizing Systems. Aspects of Collaborative
Sensing and Processing Systems have been contributed with support of Working
Group 10.3 {Concurrent Systems, Chair: Kemal Ebcioglu, USA). The important
topic of Dependability of Collaborative Self-Organizing Systems is been looked at
under the auspices of Working Group 10.4 {Dependable Computing and Fault
Tolerance, Post-chair: Jean Arlat, France). Finally, Design and Technology of
Collaborative Self-Organizing Systems are studied by contributions of this
conference. For these aspects Tiziana Margaria, Germany was responsible, acting for
Working Group 10.5 {Design and Engineering of Electronic Systems).

There are three remarkable keynote contributions to this conference. They
provide a deep insight into major challenges of Biologically Inspired Cooperative
Computing:

An Immune System Paradigm for the Assurance of Dependability of
Collaborative Self-Organizing Systems (by Algirdas Avizienis, Vytautas
Magnus University, Kaunas, Lithuania and University of California, Los
Angeles, USA),
99% (Biological) Inspiration ...
(by Michael G. Hinchey and Roy Sterritt, NASA Goddard Space Flight Center,
Greenbelt, USA, and University of Ulster, Jordanstown, Northern Ireland, rsp.)
Biologically-Inspired Design: Getting It Wrong and Getting It Right
(by Steve R. White, IBM Thomas J. Watson Research Center).

The contributions to the program of this conference have been selected from
submissions originating from North and South America, Asia and Europe. We would
like to thank the members of the program committee for the careful reviewing of all
submissions, which formed the basis for selecting this attractive program.

We welcome all participants of this 1" IFIP Conference on Biologically Inspired
Cooperative Computing - BICC 2006 and look forward to an inspiring series of talks
and discussions, embedded into a range of conferences of the IFIP World Computer
Conference 2006.

Franz J.Rammig (Germany) Yi Pan (USA)
Mauricio Solar (Chile) Hartmut Schmeck (Germany)
(Conference Co-Chairs) (Program Co-Chairs)

Program Committee

Jean Arlat, LAAS-CNRS, Toulouse (France)
Johnnie Baker, Kent State University (USA)
Yuan-Shun Dai, Indiana University - Purdue University, Indianapolis (USA)
Marco Dorigo, Universite Libre de Bruxelles (Belgium)
Kemal Ebcioglu, Global Supercomputing Corporation, New York (USA)
Luca Maria Gambardella, IDSIA, Manno-Lugano(Switzerland)
Kim Kane, University of California, Irvine (USA)
Xiaodong Li, RMIT University, Melbourne (Australia)
Tiziana Margarina, Universitat Gottingen (Germany)
Eliane Martins, State University of Campinas (Brazil)
Roy A Maxion, Carnegie Mellon University (USA)
Christian Muller-Schloer, Universitat Hannover (Germany)
Takashi Nanya, University of Tokyo (Japan)
Bemhard Nebel, Universitat Freiburg (Germany)
Stephan Olariu, Old Dominion University, Norfolk (USA)
Yi Pan, Georgia State University, Atlanta (USA)
Jochen Pfalzgraf, Universitat Salzburg (Austria)
Daniel Polani, University of Hertfordshire, Hatfield (UK)
Charles Rattray, University of Stirling (UK)
Ricardo Reis, Univ. Federal do Rio Grande do Sul, Porto Alegre (Brazil)
William H. Sanders, University of Illinois, Urbana (USA)
Richard D. Schlichting, AT&T Labs Research, Florham Park (USA)
Hartmut Schmeck, Universitat Karlsruhe (TH) (Germany)
Bemhard Sendhoff, Honda Research Institute, Offenbach (Germany)
Henk Sips, Delft University of Technology (The Netherlands)
Leslie S. Smith, University of Stirling (UK)
Ivan Stojmenovic, University of Ottawa (Canada)
Albert Y. Zomaya, University of Sydney (Australia)

Content

Biological Inspiration: Just a dream? (Invited papers)
1. An Immune System Paradigm for the Assurance of

Dependability of Collaborative Self-Organizing Systems 1
Algirdas Avizienis

2. 99% (Biological) Inspiration 7
Michael G. Hinchey and Roy Sterritt

3. Biologically-Inspired Design: Getting It Wrong and
Getting It Right 21

Steve R. White
Web Organization
4. On Building Maps of Web Pages with a Cellular Automaton 33

Hanene Azzag, David Ratsimba, David Da Costa,
Christiane Guinot, Gilles Venturini

Biological Inspiration 1
5. Completing and Adapting Models of Biological Processes 43

Tiziana Margaria, Michael G. Hinchey, Harold Raffelt,
James L. Rash, Christopher A. Rouff, Bernhard Steffen

6. The Utility of Pollination for Autonomic Computing 55
Holger Kasinger, Bernhard Bauer

7. Towards Distributed Reasoning for Behavioral Optimization 65
Michael Cebulla

Biological Inspiration 2
8. Ant Based Heuristic for OS Service Distribution on

Ad-hoc Networks 75
Tales Heimfarth, Peter Janacik

9. An Artificial Hormone System for Self-organization of
Networked Nodes 85

Wolfgang Trumler, Tobias Thiemann, Theo Ungerer
10. A Biologically Motivated Computational Architecture Inspired in

the Human Immunological System to Quantify Abnormal
Behaviors to Detect Presence of Intruders 95

Omar U. Florez-Choque, Ernesto Cuadros-Vargas
Chip-Design
11. Error Detection Techniques Applicable in an Architecture

Framework and Design Methodology for Autonomic SoCs 107
Abdelmajid Bouajila, Andreas Bernauer, Andreas Herkersdorf,
Wolfgang Rosenstiel, Oliver Bringmann, Walter Stechele

Communication
12. A Reconfigurable Ethernet Switch for Self-Optimizmg

Communication Systems 115
Bjorn Griese, Mario Porrmann

13. Learning Useful Communication Structures for Groups of Agents ... 125
Andreas Goebels

14. Maintaining Communication Between an Explorer and a
Base Station 137

Miroslaw Dynia, Jaroslaw Kutylowski, Pawel Lorek,
Friedhelm Meyer aufder Heide

Mechatronics and Computer Clusters
15. Active Patterns for Self-Optimization - Schemes for the Design of

Intelligent Mechatronic Systems 147
Andreas Schmidt

16. Acute Stress Response for Self-optimizing Mechatronic Systems 157
Holger Giese, Norma Montealegre, Thomas Milller,
Simon Oberthiir, Bernd Schulz

17. The Self Distributing Virtual Machine (SDVM):
Making Computer Clusters Adaptive 169

Jan Haase, Andreas Hofmann, Klaus Waldschmidt
Robotics and Sensor Networks:
18. Teleworkbench: An Analysis Tool for Multi-Robotic Experiments ... 179

Andry Tanoto, Jia Lei Du, UlfWitkowski, Ulrich Riickert
19. Trading off Impact and Mutation of Knowledge by Cooperatively

Learning Robots 189
Willi Richert, Bernd Kleinjohann, Lisa Kleinjohann

20. Emergent Distribution of Operating System Services in Wireless
Ad Hoc Networks 199

Peter Janacik, Tales Heimfarth
Author index 209

An Immune System Paradigm for the
Assurance of Dependability of Collaborative

Self-organizing Systems

Algirdas Avizienis
Vytautas Magnus University, Kaunas, Lithuania

and
University of California, Los Angeles, USA

Abstract. In collaborative self-organizing computing systems a complex task
is performed by relatively simple autonomous agents that act without
centralized control. Disruption of a task can be caused by agents that produce
harmful outputs due to internal failures or due to maliciously introduced
alterations of their functions. The probability of such harmful outputs is
minimized by the application of a design principle called "the immune system
paradigm" that provides individual agents with an all-hardware fault tolerance
infrastructure. The paradigm and its application are described in this paper.

1 Dependability Issues of Collaborative Self-Organizing Systems

Self-organizing computing systems can be considered to be a class of distributed
computing systems. To assure the dependability of conventional distributed systems,
fault tolerance techniques are employed [1]. Individual elements of the distributed
system are grouped into clusters, and consensus algorithms are implemented by
members of the cluster [2], or mutual diagnosis is carried out within the cluster.

Self-organizing systems differ from conventional distributed systems in that their
structure is dynamic [3]. Relatively simple autonomous agents act without central
control in jointly carrying out a complex task. The dynamic nature of such systems
makes the implementation of consensus or mutual diagnosis impractical, since
constant membership of the clusters of agents cannot be assured as the system
evolves. An agent that suffers an internal fault or external interference may fail and
produce harmful outputs that disrupt the task being carried out by the collaborative
system. Even more harmful can be maliciously introduced (by intrusion or by
malicious software) alterations of the agent's function that lead to deliberately
harmful outputs.

Please use the foUowing format when citing this chapter:

A\i2iems, A.. 2006. in IFIP International Federation for Information Processing. Voliune 216, Biologically Inspired Coop
erative Computing, eds. Pan, Y, Rammig, E, Schmeck, H., Solar, M., (Boston; Springer), pp. 1-6.

2 Algirdas Avizienis

The biological analogy of the fault or interference that affects an agent is an
infection that can lead to loss of the agent's functions and also to transmission of the
infection to other agents that receive the harmful outputs, possibly causing an
epidemic. The biologically inspired solution that I have proposed is the introduction
within the agent of a fault tolerance mechanism, called the fault tolerance
infrastructure (FTI), that is analogous to the immune system of a human being [4,5].
Every agent has its own FTI and therefore consensus algorithms are no longer
necessary to protect the system.

2 A Design Principle: the Immune System Paradigm

My objective is to design the FTI for an autonomous agent that is part of a self-
organizing system. I assume that the agent is composed of both hardware and
software subsystems and communicates to other agents via wireless links. Then I
will employ the following three analogies to derive a design principle called "the
immune system paradigm":

(1) the human body is analogous to hardware,
(2) consciousness is analogous to software,
(3) the immune system of the body is analogous to the fault tolerance

infrastructure FTI.
In the determination of the properties that the FTI must possess four fundamental
attributes of the immune system are especially relevant [6]:

(1) It is a part of the body that flinctions (i.e. detects and reacts to threats)
continuously and autonomously, independently of consciousness.

(2) Its elements (lymph nodes, other lymphoid organs, lymphocytes) are
distributed throughout the body, serving all its organs.

(3) It has its own communication links - the network of lymphatic vessels.
(4) Its elements (cells, organs, and vessels) themselves are self-defended,

redundant and in several cases diverse.
Now we can identify the properties that the FTI must have in order to justify the
immune system analogy. They are as follows:

(la) The FTI consists of hardware and firmware elements only.
(lb)The FTI is independent of (that is, it requires no support from) any software

of the agent, but can communicate with it.
(Ic)The FTI supports (provides protected decision algorithms for) multichannel

computing by the agent, including diverse hardware and software channels
that provide design fault tolerance for the agent's hardware and software.

(2) The FTI is compatible with (i.e., protects) a wide range of the agent's
hardware components, including processors, memories, supporting chipsets,
discs, power supplies, fans and various peripherals.

(3) Elements of the FTI are distributed throughout the agent's hardware and are
interconnected by their own autonomous communication links.

(4) The FTI is flilly fault-tolerant itself and requires no external support. It is not
susceptible to attacks by intrusion or malicious software and is not affected
by natural or design faults of the agent's hardware and software.

An Immune System Paradigm for the Assurance of Dependability of Collaborative 3
Self-organizing Systems

(5) An additional essential requirement is that the FTI provides status outputs to
those other agents with which it can communicate. The outputs indicate the
state of the agent's health: perfect or undergoing recovery action. Upon
failure of the agent's function the FTI shuts down all its outputs and issues a
permanent status output indicating failure.

The above listed set of design requirements is called the immune system
paradigm. It defines an FTI that can be considered to be the agent's immune system
that defends its "body" (i.e., hardware) against "infections" caused by internal faults,
external interference, intrusions, and attacks by malicious software. The FTI also
informs the other agents in its environment of its state of health. Such an FTI is
generic, that is, it can serve a variety of agents. Furthermore it is transparent to the
agent's software, compatible with other defenses used by the agent, and fully self-
protected by fault tolerance.

A different and independently devised analogy of the immune system is the
"Artificial Immune System" (AIS) of S. Forrest and S. A. Hofmeyr [7]. Its origins
are in computer security research, where the motivating objective was protection
against illegal intrusions. The analogy of the body is a local-area broadcast network,
and the AIS protects it by detecting connections that are not normally observed on
the LAN. Immune responses are not included in the model of the AIS, while they
are the essence of the FTI.

3 Architecture of the Fault Tolerance Infrastructure

The preceding sections have presented a general discussion of an FTI that serves as
the analog of an immune system for the hardware of an agent of a self-organizing
system. Such an FTI can be placed on a single hardware component, or it can be
used to protect a board with several components, or an entire chassis [5]. To
demonstrate that the FTI is a practically implementable and rather simple hardware
structure, this and the next section describe an FTI design that was intended to
protect a system composed of Intel P6 processors and associated chip sets and was
first presented in [5].

The FTI is a system composed of four types of special-purpose controllers called
"nodes". The nodes are ASICs (Application-Specific Integrated Circuits) that are
controlled by hard-wired sequencers or by read-only microcode. The basic structure
of the FTI is shown in Figure 1. The figure does not show the redundant nodes
needed for fault tolerance of the FTI itself The C (Computing) node is a COTS
processor or other hardware component of the agent being protected by the FTI. One
A (Adapter) node is provided for each C node. All error signal outputs and recovery
command inputs of the C node are connected to its A node. Within the FTI, all A
nodes are connected to one M (Monitor) node via the M (Monitor) bus. Each A node
also has a direct input (the A line) to the M node. The A nodes convey the C node
error messages to the M node. They also receive recovery commands from the M
node and issue them to C node inputs.

The A line serves to request M node attention for an incoming error message.
The M node stores in ROM the responses to error signals from every type of C node

Algirdas Avizienis

and the sequences for its own recovery. It also stores system configuration and
system time data and its own activity records. The M node is connected to the S3
(Startup, Shutdown, Survival) node. The functions of the S3 node are to control
power-on and power-off sequences for the entire agent, to generate fault-tolerant
clock signals and to provide non-volatile, radiation-hardened storage for system time
and configuration. The S3 node has a backup power supply (e.g. a battery) and
remains on at all times during the life of the FTI.

The D (Decision) node provides fault-tolerant comparison and voting services for
the C nodes, including decision algorithms for N-version software executing on
diverse processors (C-nodes). Fast response of the D node is assured by hardware
implementation of the decision algorithms. The D node also keeps a log of
disagreements in the decisions. The second function of the D node is to serve as a
communication link between the software of the C nodes and the M node. C nodes
may request configuration and M node activity data or send power control
commands. The D node has a built-in A node (the A port) that links it to the M
node. Another function of the FTI is to provide fault tolerant power management for
the entire agent system, including individual power switches for every C node, as
shown in Figure 1. Every node except the S3 has a power switch. The FTI has its
own fault-tolerant power supply (IP).

Client System Bus

SF

SP

iP

SP
D

A port

Alr-'-'i II i

IP IPS

IP

MBus

M

IP

(CBus

S3

BP

SP: System Power

IP: Infrastructure Power

BP: Backup Power

PS: Power Switch

C: Computing Node

A: Adapter Node

D: Decision Node

M: Monitor Node

S3:Startup,Shutdown, Survival Node

AL: A-Line

Note: Redundant nodes are not shown

Fig. 1. Basic Structure of the FTI

An Immune System Paradigm for the Assurance of Dependability of Collaborative 5
Self-organizing Systems

4 Fault Tolerance of the FTI

The partitioning of the FTI is motivated by the need to make it fault-tolerant. The A
and D nodes are self-checking pairs, since high error detection coverage is essential,
while spare C and D nodes can be provided for recovery under M node control. The
M node must be continuously available, therefore triplication and voting (TMR) is
needed, with spare M nodes added for longer life.

The S3 nodes manage M node replacement and also shut the agent down in the
case of failure or global catastrophic events (temporary power loss, heavy radiation,
etc.). They are protected by the use of two or more self-checking pairs with backup
power. S3 nodes were separated from M nodes to make the node that must survive
catastrophic events as small as possible. The S3 nodes also provide outputs to the
agent's environment that indicate the health status of the agent: perfect, undergoing
protective action or failed.

The all-hardware implementation of the FTI makes it safe from software bugs
and external attacks. The one exception is the power management command from C
to M nodes (via the D node) which could be used to shut the system down. Special
protection is needed here. Hardware design faults in the FTI nodes could be handled
by design diversity of self-checking pairs and of M nodes, although the logic of the
nodes is very simple and their complete verification should be possible.

When interconnected, the FTI and the original autonomous agent form a
computing system that is protected against most causes of system failure. An
example system of this type is called DiSTARS: Diversifiable Self Testing And
Repairing System and is discussed in detail in [1]. DiSTARS is the first example of
an implementation of the immune system paradigm. Much detail of implementation
of the FTI is presented in the U.S. patent application disclosure "Self-Testing and -
Repairing Fault Tolerance Infrastructure for Computer Systems" by A. Avizienis,
filed June 19, 2001.

5. In Conclusion: Some Challenges

The use of the FTI is likely to be affordable for most agents, since the A, M, D, and
S3 nodes have a simple internal structure, as shown in [5] and the above mentioned
disclosure. It is more interesting to consider that there are some truly challenging
missions that can only be justified if their computing systems with the FTI have very
high coverage with respect to design faults and to catastrophic transients due to
radiation. Furthermore, extensive sparing and efficient power management can also
be provided by the FTI. Given that the MTBF of contemporary processor and
memory chips is approaching 1000 years, missions that can be contemplated include
the 1000-day manned mission to Mars [8] with the dependability of a 10-hour flight
of a commercial airliner. Another fascinating possibility is an unmanned very long
life interstellar mission using a fault-tolerant relay chain of modest-cost DiSTARS
type spacecraft [9]. Both missions are discussed in [5].

6 Algirdas Avizienis

References

1. A.Avizienis, J.-C. Laprie, B. Randell, C. Landwehr. Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans. On Dependable and Secure Computing,
1(1): 11-33, January-March 2004.

2. N.A. Lynch. Distributed algorithms. Morgan Kaufinann, 1996.
3. F. Heylighen, C. Gershenson, The meaning of self-organization in computers. IEEE

Intelligent Systems. July/August 2003, pp. 72-75.
4. A. Avizienis. Toward systematic design of fault-tolerant systems. Computer, 30(4):51-58,

April 1997.
5. A.Avizienis, A fault tolerance infrastructure for dependable computing with high

performance COTS components. Proc. of the Int. Conference on Dependable Systems and
Networks (DSN 2000), New York, June 2000, pages 492-500.

6. G.J.V. Nossal. Life, death and the immune system. Scientific American, 269(33)52-62,
September 1993.

7. S.A. Hofineyr, S. Forrest. Immunity by design: An artificial immune system. Proc. 1999
Genetic and Evolutionary Computation Conference, pages 1289-1296. Morgan-Kaufinann,
1999.

8. Special report: sending astronauts to Mars. Scientific American, 282(3):40-63, March 2000.
9. A. Avizienis. The hundred year spacecraft. Proceedings of the V NASA/DoD Workshop on

Evolvable Hardware, Pasadena, CA, July 1999, pp. 233-239.

99% (Biological) Inspiration ...

Michael G. Hinchey' and Roy Sterritt̂

' NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
•̂ University of Ulster, School of Computing and Mathematics,

Northern Ireland

Abstract. Greater understanding of biology in modem times has enabled
significant breakthroughs in improving healthcare, quality of life, and
eliminating many diseases and congenital illnesses. Simultaneously there is a
move towards emulating nature and copying many of the wonders uncovered
in biology, resulting in "biologically inspired" systems. Significant results
have been reported in a wide range of areas, with systems inspired by nature
enabling exploration, communication, and advances that were never dreamed
possible just a few years ago. We warn, that as in many other fields of
endeavor, we should be inspired by nature and biology, not engage in
mimicry. We describe some results of biological inspiration that augur
promise in terms of improving the safety and security of systems, and in
developing self-managing systems, that we hope will ultimately lead to self-
governing systems.

1 Introduction

Thomas Alva Edison described invention as 1% inspiration and 99% perspiration.
This quotation is attributed to him with multiple variations, some describing
invention, others describing genius.*

We cannot possibly hope to match the inventiveness and genius of nature. We
can be inspired by nature and influenced by it, but to attempt to mimic nature is
likely to have very limited success, as early pioneers of flight discovered.

* The earliest recorded quotation is from a press conference, quoted by James D. Newton in
Uncommon Friends (1929): "None of my inventions came by accident. I see a worthwhile
need to be met and I make trial after trial until it comes. What it boils down to is one per
cent inspiration and ninety-nine per cent perspiration."

Please use the following format when citing this chapter:

Hinchey, M.G., Sterritt, R., 2006, in IFIP International Federation for Information Processing, Volume 216, Biologically
Inspired Cooperative Computing, eds. Pan, Y, Rammig, F., Schmeck, H., Solar, M., (Boston: Springer), pp. 7-20.

8 Michael G. Hinchey and Roy Sterritt

Icarus attempted to escape the Labyrinth in which he was imprisoned with his
father, Daedalus, by building wings from feathers and wax. Despite Deadalus's
warning not to fly so low as to get the feathers wet, nor so near the sun as to melt the
wax, Icarus flew too high, the wax did indeed melt, and he fell to his death.

In 1809, a Viennese watchmaker named Degen claimed to have flown with
similar apparatus. In reality, he only hopped a short distance, and was supported by
a balloon. Early attempts at mechanical flight involved the use of aircraft with wings
that flapped like a bird's. But clearly, trying to copy birds was not going to work:

Since the days of Bishop Wilkins the scheme of flying by artificial wings has been much
ridiculed; and indeed the idea of attaching wings to the arms of a man is ridiculous enough,
as the pectoral muscles of a bird occupy more than two-thirds of its whole muscular
strength, whereas in man the muscles, that could operate upon wings thus attached, would
probably not exceed one-tenth of his whole mass. There is no proof that, weight for weight,
a man is comparatively weaker than a bird ... [1].

It was only when inventors such as Otto Lilienthal, building on the work of Cayley,
moved away from directly mimicking nature, and adopted fixed wings, originally as
gliders and later as monoplanes, and eventually as aircraft with wings and a tail, as
Cayley had identified was needed for flight [2], that success was achieved [1].
Even then, early aircraft had very limited success (the Wright brothers' historic first
powered flight at Kitty Hawk, North Carolina, in 1903 only lasted 12 seconds and
120 feet [3]), and required the addition of gas-powered engine for thrust and the
Wright brothers' identification of an effective means of lateral control, for a feasible
heavier-than-air craft to be possible.

Aircraft as we know them now bear very little resemblance to birds. Flight was
inspired by nature, but hundreds of years were spent trying to copy nature, with little
success. Inspiration was vital—otherwise man would never have attempted to fly.
But direct mimicry was the wrong direction. Similarly we believe that computing
systems may benefit much by being inspired by biology, but should not attempt to
copy biology slavishly.

To invent an airplane is nothing.
To build one is something.

But to fly is everything.
Otto Lilienthal (1848-1896)

2 Biologically-Inspired Computing

We've discovered the secret of life.
Francis Cricli (1916-2004)

The Nobel prize-winning discovery, in 1953, of the double helix structure of DNA
and its encoding was revolutionary. It has opened a whole new world of
understanding of biology and the way in which nature works. Simultaneously, it has
resulted in several new fields of scientific research: genetics, genomics,
computational biology, and bioinformatics, to name but a few.

99% (Biological) Inspiration ... 9

The understanding of how nature encodes biological information and determines
how living organisms will develop and evolve has enabled us to improve the quality
of life, eliminate certain diseases, cure congenital defects in unborn children, and
make significant advances in controlling and eventually eliminating life-threatening
conditions.

This greater understanding of the biology of living organisms has also indicated a
parallel with computing systems: molecules in living cells interact, grow, and
transform according to the "program" dictated by DNA. Indeed, the goal of
bioinformatics is to develop "in silico" models of in vitro and in vivo biological
experiments [4].

Paradigms of Computing are emerging based on modeling and developing
computer-based systems exploiting ideas that are observed in nature. This includes
building self-management and self-governance mechanisms that are inspired by the
human body's autonomic nervous system into computer systems, modeling
evolutionary systems analogous to colonies of ants or other insects, and developing
highly-efficient and highly-complex distributed systems from large numbers of
(often quite simple) largely homogeneous components to reflect the behavior of
flocks of birds, swarms of bees, herds of animals, or schools offish.

This field of "Biologically-Inspired Computing", often known in other
incarnations by other names, such as: Autonomic Computing, Organic Computing,
Biomimetics, and Artificial Life, amongst others, is poised at the intersection of
Computer Science, Engineering, Mathematics, and the Life Sciences [5]. Successes
have been reported in the fields of drug discovery, data communications, computer
animation, control and command, exploration systems for space, undersea, and harsh
environments, to name but a few, and augur much promise for future progress [5,6].

3 The Autonomic Nervous System

The nervous system and the automatic machine are fimdamentally alike in that
they are devices, which make decisions on the basis of decisions they made in the past.

Norbert Werner (1894-1964)

Inspiration from human biology, in the form of the autonomic nervous system
(ANS), is the focus of the Autonomic Computing initiative. The idea is that
mechanisms that are "autonomic", in-built, and requiring no conscious thought in the
human body are used as inspiration for building mechanisms that will enable a
computer system to become self-managing [7].

The human (and animal) body's sympathetic nervous system (SyNS) deals with
defense and protection ("fight or flight") and the parasympathetic nervous system
(PaNS) deals with long-term health of the body ("rest and digest"), performing the
vegetative functions of the body such as circulation of the blood, intestinal activity,
and secretion of chemicals (hormones) that circulate in the blood. So too an
autonomic system tries to ensure the continued health and well-being of a computer-
based system by sending and monitoring various signals in the system.

10 Michael G. Hinchey and Roy Sterritt

The general properties of an autonomic (self-managing) system can be
summarised by four objectives: being self-configuring, self-healing, self-optimizing
and self-protecting, and four attributes: self-awareness, self-situated, self-monitoring
and self-adjusting (Figure 1). Essentially, the objectives represent broad system
requirements, while the attributes identify basic implementation mechanisms [8].

/.'

5EL7 COICIOUFINI

• SELF HE.'iLING

/ < p ' .- SELF OPTIt II2INC

^ _ « t f L ^ —— SELFPFOTECTMIG
what ~-~

'—— iJELF*
H

V, :t
" V V - — 5LLF'

^ T t g ' . — SFIFAH-ARE

^ ^ ' ^ i ^T'' SELF CJITOHTED
? x ' ' S " " ^ " ^ ^ (HIVP01 n4E>!T AWARE,

\ ̂ ^ SELFiJfOHITOFIlIG

~- 3FLF .yjJUbTING

Fig. 1 Autonomic System Properties

In achieving such self-managing objectives, a system must be aware of its internal
state (self-aware) and current external operating conditions (self-situated). Changing
circumstances are detected through self-monitoring, and adaptations are made
accordingly (self-adjusting). As such, a system must have knowledge of its available
resources, its components, their desired performance characteristics, their current
status, and the status of inter-connections with other systems, along with rules and
policies of how these may be adjusted. Such ability to operate in a heterogeneous
environment will require the use of open standards to enable global understanding
and communication with other systems [5].

These mechanisms are not independent entities. For instance, if an attack is
successful, this will necessitate self-healing actions, and a mix of self-configuration
and self-optimization, in the first instance to ensure dependability and continued
operation of the system, and later to increase self-protection against similar future
attacks. Finally, these self-mechanisms should ensure that there is minimal
disruption to users, avoiding significant delays in processing.

At the heart of the architecture of any autonomic system are sensors and effectors.
A control loop is created by monitoring behavior through sensors, comparing this
with expectations (knowledge, as in historical and current data, rules and beliefs),
plarming what action is necessary (if any), and then executing that action through
effectors. The closed loop of feedback control provides the basic backbone structure
for each system component [9].

The autonomic environment requires that autonomic elements and, in particular,
autonomic managers for these elements communicate with one another concerning

99% (Biological) Inspiration . 11

self-* activities, in order to ensure the robustness of the environment. Figure 2
depicts that the autonomic manager communications (AMOAM) also includes a
reflex signal. This may be facilitated through the additional concept of a pulse
monitor—PBM (an extension of the embedded system's heart-beat monitor, or
HBM, which safeguards vital processes through the emission of a regular "I am
alive" signal to another process) with the capability to encode health and urgency
signals as a pulse [10]. Together with the standard event messages on the autonomic
communications channel, this provides dynamics within autonomic responses and
multiple loops of control, such as reflex reactions among the autonomic managers.
This reflex component may be used to safeguard the autonomic element by
communicating its health to another AE. The component may also be utilized to
communicate environmental health information.

Autonomic Corhputing Environment

.<^o^*

p.0 A" ,<\o' x(^^'^

rlo.iHor

ui-^"

Effpc*ai

ComnHifiiBirtiurb

^•^.
- <a

^ r * < AtJipteiJPMiinPi

Sclf-riDnitor _ ''"'"••<'''«« Si-lf-A.;j...!or | \ \

Sen- or ' EffTtor

fiddjyen C»*npotii'iit

Fig. 2 Autonomic System Environment consisting of Autonomic Elements

An important aspect concerning the reflex reaction and the pulse monitor is the
minimization of data sent—essentially only a "signal" is transmitted. Strictly
speaking, this is not mandatory; more information may be sent, yet the additional
information must not compromise the reflex reaction. For instance, in the absence
of bandwidth concerns, information that can be acted upon quickly and not incur
processing delays could be sent. The important aspect is that the information must
be in a form that can be acted upon immediately and not involve processing delays
(such as is the case of event correlation) [11].

Just as the beat of the heart has a double beat ("lub-dub", as it is referred to by the
medical profession) the autonomic element's pulse monitor may have a double beat
encoded—a je//"health/urgency measure and an environment health/urgency measure

12 Michael G. Hinchey and Roy Sterritt

[12]. These match directly with the two control loops within the AE, and the self-
awareness and environment awareness properties.

4 Inspiration from Human Biology

We still do not know one thousandth of one percent of what nature has revealed to us.
Albert Einstein (1879-1955)

4.1 New Metaphors

In this emerging field of biologically-inspired computing, we are seeking inspiration
for new approaches from (obviously, pre-existing) biological mechanisms, and in
fact a whole plethora of further self-* properties are being proposed and developed,
leading to the coining of the term seljware.

The biological cell cycle is often described as a circle of cell life and division. A
cell divides into two "daughter cells" and both of these cells live, "eat", grow, copy
their genetic material and divide again producing two more daughter cells. Since
each daughter cell has a copy of the same genes in its nucleus, daughter cells are
"clones" of each other. This "twinning" goes on and on with each cell cycle. This is
a natural process.

Very fast cell cycles occur during development causing a single cell to make
many copies of itself as it grows and differentiates into an embryo. Some very fast
cell cycles also occur in adult animals. Hair, skin and gut cells have very fast cell
cycles to replace cells that die naturally. Scientists now believe that some forms of
cancer may be caused by cells not dying quickly enough, rather than cycling out of
control.

But there is a kind of "parking spot" in the cell cycle, called "quiescence". A
quiescent cell has left the cell cycle; it has stopped dividing (Figure 3). Quiescent
cells may re-enter the cell cycle at some later time, or they may not; it depends on
the type of cell. Most nerve cells stay quiescent forever. On the other hand, some
quiescent cells may later re-enter the cell cycle in order to create more cells (for
example, during pubescent development) [13].

We have been considering self-destruction as a means of providing an intrinsic
safety mechanism against non-desirable emergent behavior from the selfware.
It is believed that a cell knows when to commit suicide because cells are
programmed to do so—self-destruction (sD) is an intrinsic property. This sD is
delayed due to the continuous receipt of biochemical retrieves. This process is
referred to as apoptosis, meaning "drop out", used by the Greeks to refer to the
Autumn dropping of leaves from trees; i.e., loss of cells that ought to die in the midst
of the living structure. The process has also been nicknamed "death by default"
where cells are prevented from putting an end to themselves due to constant receipt
of biochemical "stay alive" signals.

99% (Biological) Inspiration . 13

rell
divides

o

Fig. 3 Cycle of cell life - featuring a quiescent cell

Further investigations into the apoptosis process have discovered more details
about the self-destruct program. Whenever a cell divides, it simultaneously receives
orders to kill itself. Without a reprieve signal, the cell does indeed self-destruct. It
is believed that the reason for this is self-protection, as the most dangerous time for
the body is when a cell divides, since if just one of the billions of cells locks into
division the result is a tumor, while simultaneously a cell must divide to build and
maintain a body [14, 15, 16].

4.2 Inspiration

Of course, each of these techniques and mechanisms is useful in achieving
autonomicity and in mimicking the autonomic nervous system (ANS). But while
the inspiration comes substantially from that of the human (or animal) body, the
techniques are not those that the ANS actually uses.

There are signals sent around the human body in the form of hormones and
pulses, amongst others, in the blood. But in modem computer science and
engineering, we have developed many efficient communication mechanisms that do
not rely on signals flowing through miles of unnecessary channels (veins and
arteries), but may be directly routed or broadcast using wireless communications.

We do not know precisely how apoptosis and quiescence works, nor specifically
their roles. But they certainly offer interesting ideas for future security and safety
mechanisms in computer-based systems [6].

14 Michael G. Hinchey and Roy Sterritt

These techniques are inspired by nature, but not necessarily implemented as they
are by nature. In many cases, we can make some optimizations or improvements; in
other cases we simply do not understand enough of how nature works to implement
these directly, but they can certainly inspire interesting metaphors for self-
management and self-governance.

5 Swarms

What is not good for the swarm is not good for the bee.
Marcus Aurelius (A.D. 121-180)

We are all familiar with swarms in nature. The mere mention of the word "swarm"
conjures up images of large groupings of small insects, such as bees (apiidae) or
locusts (acridiidae), each insect having a simple role, but with the swarm as a whole
producing complex behavior.

Strictly speaking, such emergence of complex behavior is not limited to swarms,
and we see similar complex social structures occurring with higher order animals and
insects that don't swarm per se: colonies of ants, flocks of birds, packs of wolves,
etc. These groupings behave like swarms^ in many ways [17].

A swarm consists of a large number of simple entities that have local interactions
(including interactions with the environment) [29]. The result of the combination of
simple behaviors (the microscopic behavior) is the emergence of complex behavior
(the macroscopic behavior) and the ability to achieve significant results as a "team"
[18]. Basing collaborative computing systems on the concept of a swarm allows us
to build complex systems, with often surprising behavior, from simple components.

Intelligent swarm technology is based on swarm technology where the individual
members of the swarm also exhibit independent intelligence [19]. Intelligent
swarms may be homogeneous or heterogeneous, or may start out as homogeneous
and evolve as in different environments they "learn" different things, develop new
(different) goals, and eventually become heterogeneous, reflecting different
capabilities and a societal structure.

Agent swarms have been used as a computer modeling technique and have also
been used as a tool to study complex systems [20], Examples of simulations that
have been undertaken include flocks of birds as well as business and economics and
ecological systems.

In swarm simulations, each of the agents is given certain parameters that it tries to
maximize. Swarm simulations have been developed that exhibit unlikely emergent
behavior. These emergent behaviors are the sums of often simple individual
behaviors, but, when aggregated, form complex and often unexpected behaviors.

Swarm intelligence techniques (note the slight difference in terminology from
"intelligent swarms") are population-based stochastic methods used in combinatorial

^ The term "swarm", as we use it here, refers to a (possibly large) grouping of simple
components collaboratmg to achieve some goal and produce significant results. The term
should not be taken to imply that these components fly (or are airborne); they may equally
well be on the surface of the Earth, under the surface, under water, or indeed operating on
other planets.

99% (Biological) Inspiration ... 15

optimization problems, where the collective behavior of relatively simple individuals
arises from their local interactions with their environment to give rise to the
emergence of functional global patterns.

Swarm robotics refers to the application of swarm intelligence techniques to the
analysis of swarms where the embodiment of the "agents" is as physical robotic
devices.

5.1 Swarm Inspiration

The idea that swarms can be used to solve complex problems has been taken up in
several areas of computer science. These include the use of analogies to the
pheromone trails used by ants (to leave trails for the colony to follow to stores of
food) in software to solve the traveling salesman problem, allowing the software to
"find" the shortest route by following the route with the most "digital pheromone",
meaning it is the shortest (as on longer routes the concentration of pheromone would
be lower due to being spread over a greater distance) [17, 21]. The approach is an
example of Ant Colony Optimization, a very interesting approach that is inspired by
the social behavior of ants, and uses their behavior patterns as models for solving
difficult combinational optimization problems [22].

Swarm behavior is also being investigated for use in such applications as
telephone switching, network routing, data categorizing, and shortest path
optimizations. Swarm radio and "swarmcasting" of television over the internet is an
approach to file-sharing that is inspired substantially by swarms. The approach
exploits under-utilized uplinks to download part of the file to other users and then
allow for the receipt of portions of the file from those users. The result is that
streaming video is possible even without a high-speed internet connection.

Research at Penn State University has focused on the use of particle swarms for
the development of quantitative structure activity relationships (QSAR) models used
in the area of drug design [23]. The research created models using artificial neural
networks and k-nearest neighbor and kernel regression. Binary and niching particle
swarms were used to solve feature selection and feature weighting problems.

Particle swarms have influenced the field of computer animation also. Rather than
scripting the path of each individual bird in a flock, the Boids project [24] elaborated
a particle swarm with the simulated birds being the particles. The aggregate motion
of the simulated flock is much like that in nature: it is the result of the dense
interaction of the relatively simple behaviors of each of the (simulated) birds, where
each bird chooses its own path.

5.2 Swarms for Exploration

NASA is investigating the use of swarm technologies for the development of
sustainable exploration missions that will be autonomous and exhibit autonomic
properties [25]. The idea is that biologically-inspired swarms of smaller spacecraft
offer greater redundancy (and, consequently, greater protection of assets), reduced
costs and risks, and the ability to explore regions of space where a single large
spacecraft would be impractical.

ANTS is a NASA concept mission, a collaboration between NASA Goddard
Space Flight Center and NASA Langley Research Center, which aims at the
development of revolutionary mission architectures and the exploitation of artificial

16 Michael G. Hinchey and Roy Sterritt

intelligence techniques and the paradigm of biological inspiration in future space
exploration. The mission concept includes the use of swarm technologies for both
spacecraft and surface-based rovers, and consists of several submissions:

• SARA: The Saturn Autonomous Ring Array will launch 1000 pico-class
spacecraft, organized as ten sub-swarms, each with specialized instruments, to
perform in situ exploration of Saturn's rings, by which to understand their
constitution and how they were formed. The concept mission will require self-
configuring structures for nuclear propulsion and control, which lies beyond the
scope of this paper. Additionally, autonomous operation is necessary for both
maneuvering around Saturn's rings and collision avoidance.

• PAM: Prospecting Asteroid Mission will also launch 1000 pico-class
spacecraft, but here with the aim of exploring the asteroid belt and collecting data on
particular asteroids of interest for potential future mining operations.

• LARA: ANTS Application Lunar Base Activities will exploit new NASA-
developed technologies in the field of miniaturized robotics, which may form the
basis of remote landers to be launched to the moon from remote sites, and may
exploit innovative techniques to allow rovers to move in an amoeboid-like fashion
over the moon's uneven terrain.

5.3 Inspiration and Improvement

ANTS, although a nice acronym, is actually somewhat of a misnomer—other than
the LARA submission, the concept mission is more inspired by swarms of bees or
flocks of birds than by colonies of ants.

But even then, ANTS is merely inspired by birds and bees. As we discussed in
Section 1, the pioneers of flight found that directly attempting to mimic avian flight
was the wrong way forward. Similarly, ANTS spacecraft in the PAM and SARA
submissions will not attempt to fly like birds (in any case it would not be practical to
build them with wings, a short tail, a curved sternum and hollow bones, in the way
birds have evolved from Archaeopteryx, a dromaeosaurid from the late Jurrasic and
Cretaceous periods and the earliest known flying creature).

In PAM, illustrated in Figure 4, a swarm of autonomous pico-class
(approximately 1kg) spacecraft will explore the asteroid belt for asteroids with
certain characteristics. In this mission, a transport ship, launched from Earth, will
travel to a point in space where gravitational forces on small objects (such as pico-
class spacecraft) are all but negligible. From this point, termed a Lagrangian, 1000
spacecraft, which will have been assembled en route from Earth, will be launched
into the asteroid belt.

Approximately 80 percent of the spacecraft will be workers that will carry the
specialized instruments (e.g., a magnetometer or an x-ray, gamma-ray, visible/IR, or
neutral mass spectrometer) and will obtain specific types of data. Some will be
coordinators (called leaders) that have rules that decide the types of asteroids and
data the mission is interested in and that will coordinate the efforts of the workers.
The third type of spacecraft are messengers that will coordinate communication
between the rulers and workers, and communications with the Earth ground station.

The swarm will form sub-swarms under the control of a ruler, which contains
models of the types of science that it wants to perform. The ruler will coordinate
workers, each of which uses its individual instrument to collect data on specific

99% (Biological) Inspiration ... 17

asteroids and feed this information back to the ruler, who will determine which
asteroids are worth examining further. If the data matches the profile of a type of
asteroid that is of interest, an imaging spacecraft will be sent to the asteroid to
ascertain the exact location and to create a rough model to be used by other
spacecraft for maneuvering around the asteroid. Other teams of spacecraft will then
coordinate to finish mapping the asteroid to form a complete model.

This is not how birds flock nor bees swarm.* Birds form flocks in response to a
flocking call issued by one of the birds. Birds in the flock continue in the flight
pattern by "following" another bird, ft is thought that collisions are avoided via
flight calls, whereby birds let other birds know where they are via sound. In ANTS,
the spacecraft do not "broadcast" in this way; spacecraft do not communicate with
each other directly, but rather via a messenger that coordinates communications
between the spacecraft and with Earth. Collision-avoidance (both collisions with
other spacecraft and with asteroids) in ANTS is achieved by keeping models of
locations, which will be achieved via various means. Since movement will be
enabled only by simple thrusters, it is anticipated that many of the spacecraft will be
lost due to collisions.

Rulers Lagrange point
Asteroid(5) ,;- '-^ habitat

Workers'-*-; W'Ssengws
* * L j ^ ^ W o f k e r s - W o r k e p

1 4 ' \ ^ •'*'••••'
x-ray %vorkie'„, ' " * 5

A Mag vyorKar

Fig. 4 ANTS PAM (Prospecting Asteroid Mission) scenario

In many senses, this is more efficient than the broadcast mechanism of the
flocking calls and flight calls. There is less communication overhead, and the
spacecraft are not continually having to update the information on where other
spacecraft are located relative to them. Of course we can tolerate certain losses of
spacecraft (one of the motivations for a swarm-based approach is to have redundancy
and avoid mission loss due to a single incident), as long as the number of incidents is
within certain boundaries, whereas a flock of birds could not tolerate continual losses
due to collisions.

* Not all species of bee swarm; there are several solitary species.

18 Michael G. Hinchey and Roy Sterritt

ANTS spacecraft will also need to have protection mechanisms built in, such as
going into sleep mode to protect solar sails (used for power) during solar storms.
This is analogous to a flock of birds taking shelter in severe weather, but the
spacecraft do not have to land and find shelter, they merely have to alter their
position and lower their sails to avoid damage from electrical charges, etc.

Similarly, flocks of birds and swarms of bees do not form sub-swarms as is
envisioned in ANTS, nor do they take instructions directly from a leader. While
flocks and swarms in nature do occasionally allow for an alternate to take over a
particular role (e.g., the establishment of a new queen in a hive), this is not so
efficient as in ANTS where a worker with a damaged instrument, instead of
becoming useless, can take over the role of messenger, or even leader.

The ANTS swarm, collaborating to collect science data from the asteroid belt, is
clearly inspired by nature and the biology of birds and bees, but exhibits
enhancements over nature by virtue of techniques and approaches known to us from
the fields of computing and engineering.

6 Conclusions

The human race has gained much from a greater understanding of biology.
Understanding how the "program" of life works has made it possible to prevent
many undesirable conditions, cure certain diseases and afflictions, devise new
treatments and drugs and understand better when they can be used, etc.

Notwithstanding this greater understanding of biology, most of these
advancements were due to the exploitation of modem computing technology and its
application to biological problems, and in particular the ability to develop and
explore (search) models of reality. We begin with such models, and enhance them
with concepts not seen in nature or the real world [26], but deriving from
advancements in computing and engineering.

Such modeling of biological phenomena and nature has enabled us to better
understand the behavior patterns of insects, birds, and mammals. Simultaneously, an
understanding of biology and nature has enabled the creation of a whole field of
biologically-inspired computing. Ingenuity in nature has sparked imaginations and
inspired ideas for means of developing complex computer systems that reduce
complexity, enable the development of classes of system which we could never have
achieved without this inspiration, and move towards self-governance of systems.

Biologically-inspired computing involves looking at biology and nature and
models of it, and then adapting it and improving on it with advances made in
computing technology and engineering.

Unlike Edison, at least in this context, we see the inspiration as being 99% of the
effort, and believe that computing can benefit in many ways from biological
inspiration. We believe that biologically-inspired computing should be 99%
(biological) inspiration, combined with 1% mimicry.

Look deep into nature, and you will understand everything better.
Albert Einstein (1879-1955)

99% (Biological) Inspiration ... 19

Acknowledgements

We are grateful to the organizers of BICC 2006 for inviting this talk and associated
paper.

Autonomic apoptosis was introduced in [14], and quiescence in [6]. More
detailed expositions of the ANTS concept mission, and specifically the PAM
submission, are given in [25,27, 28].

Part of this work has been supported by the NASA Office of Systems and Mission
Assurance (OSMA) through its Software Assurance Research Program (SARP)
project, Formal Approaches to Swarm Technologies (FAST), and by NASA Software
Engineering Laboratory, Goddard Space Flight Center (Code 581).

This research is partly supported at University of Ulster by the Computer Science
Research Institute (CSRI) and the Centre for Software Process Technologies (CSPT)
which is funded by Invest NI through the Centres of Excellence Programme, under
the EU Peace II initiative.

Some of the technologies described in this paper are patent-pending and assigned
to the United States government.

References

1. O. Lilienthal, "Practical Experiments for the Development of Human Flight," The
Aeronautical Annual, pp 7-20, 1896.

2. G. Cayley, "On Aeriel Naviation," Nicholson's Journal, November 1809.
3. B. Gates, "The Wright Brothers," Time, 29 March 1999.
4. J. Cohen, "Bioinformatics—an Introduction for Computer Scientists," ACM Computing

Surveys, 36(2): 122-158, June 2004.
5. M.G. Hinchey and R. Sterritt, "Self-managing Software," IEEE Computer 39(2): 107-109,

February 2006.
6. R. Sterritt and M.G. Hinchey, "Biologically-Inspired Concepts for Autonomic Self-

Protection in Multiagent Systems," In Proc. 3"' Int. Workshop Safety and Security in
Multiagent Systems (SASEMAS 2006) at AAMAS, Hakodate, Japan, 8-12 May 2006.

7. R. Sterritt, "Towards Autonomic Computing: Effective Event Management," In Proc.
27th Ann. IEEE/NASA Software Engineering Workshop (SEW), MD, USA, 3-5 Dec.
2002. IEEE Computer Society Press, pp. 40-47.

8. R. Sterritt and D.W. Bustard, "Autonomic Computing: a Means of Achieving
Dependability?" In Proc. IEEE Int. Conf Engineering of Computer Based Systems
(ECBS'03), Huntsville, AL, USA, 7-11 April 2003, pp. 247-251.

9. R. Sterritt and D.W. Bustard, "Towards an Autonomic Computing Environment," In
Proc. IEEE DEXA 2003 Workshops - 1st Int. Workshop Autonomic Computing Systems,
Prague, Czech Republic, 1-5 September 2003, pp. 694-698.

10. R. Sterritt, "Pulse Monitoring: Extending the Health-check for the Autonomic GRID," In
Proc. IEEE Workshop Autonomic Computing Principles and Architectures (AUCOPA
2003) atINDIN2003, Banff, AB, Canada, 22-23 August 2003, pp. 433-440.

11. R. Sterritt and D.F. Bantz, "PAC-MEN: Personal Autonomic Computing Monitoring
Environments," In Proc IEEE DEXA 2004 Workshops - 2nd Int. Workshop Self-Adaptive
and Autonomic Computing Systems (SAACS 04), Zaragoza, Spain, 30 Aug-3 Sept. 2004.

20 Michael G. Hinchey and Roy Sterritt

12. R. Sterritt and M.G. Hinchey, "SPAACE:; Self- Properties for an Autonomous and
Autonomic Computing Environment," In Proc. Software Engineering Research and
Practice (SERPV5), Las Vegas, NV, 27-29 June 2005, CREA Press.

13. 3. Love, Science Explained, 1999.
14. R. Sterritt and M.G. Hinchey, "Apoptosis and Self-Destruct: A Contribution to

Autonomic Agents?" In Proc. FAABS-III, 3rd NASA/IEEE Workshop on Formal
Approaches to Agent-Based Systems, 26-27 April 2004, Greenbelt, MD, Springer Verlag
LNCS 3228, 2005.

15. R. Sterritt and M.G. Hinchey, "Engineering Ultimate Self-Protection in Autonomic
Agents for Space Exploration Missions," In Proc. IEEE Workshop on the Engineering of
Autonomic Systems (EASe 2005) at 12th Ann. IEEE Int. Conf. Engineering of Computer
Based Systems (ECBS 2005), Greenbelt, MD, USA, 3-8 April 2005, IEEE Computer
Society Press, pp. 506-511.

16. R. Sterritt and M.G. Hinchey, "Biologically-Inspired Concepts for Self-Managing
Ubiquitous and Pervasive Computing Environments" In Proc. WRAC-II, 2nd NASA/IEEE
Workshop on Radical Agent Concepts, Sept. 2005, Greenbelt, MD, Springer Verlag
LNCS 3825, 2006.

17. M.G. Hinchey, J.L. Rash, W.F. Truszkowski, C.A. Rouff and R. Sterritt, "Autonomous
and Autonomic Swarms," In Proc. Autonomic & Autonomous Space Exploration Systems
(A&A-SES-l) at 2005 Inl Conf. Software Engineering Research and Practice (SERP'05),
Las Vegas, NV, 27-29 June 2005, CREA Press, pp 36-42,

18. E. Bonabeau, G. Theraulax, "Swarm Smarts," Scientific American, Mar 2000, pp 72-79.
19. G. Beni and J. Want, "Swarm Intelligence," In Proc. Seventh Annual Meeting of the

Robotics Society of Japan, Tokyo, Japan, 1989, pp 425-428, RSJ Press.
20. D.E. Hiebler, "The Swarm Simulation System and Individual-Based Modeling," In Proc.

Decision Support 2001: Advanced Technology for Natural Resource Management,
Toronto, Canada, September 1994.

21. M. Dorigo and L.M. Gambardella, "Ant Colonies for the Traveling Salesman Problem,"
BioSystems, 43:73-81,1997.

22. M. Dorigo and T. Stiltzle, Ant Colony Optimization, MIT Press, Cambridge, MA, 2004.
23. W. Cedeno and D.K. Agrafiotis. "Combining Particle Swarms and k-nearest Neighbors

for the Development of Quantitative Structure-Activity Relationships," Int. J. Comput.
Res, Il(4):443-452, 2003.

24. C.W. Reynolds, "Flocks, Herds, and Schools: A Distributed Behavior Model," Computer
Graphics, 2l{4y.25-34, 1987.

25. W.F. Truszkowski, M.G. Hinchey, J.L. Rash and C.A. Rouff, "Autonomous and
Autonomic Systems: A Paradigm for Fumre Space Exploration Missions," IEEE Trans
on Systems, Man, and Cybernetics—Part C, 36(3):May 2006.

26. I. Peterson, "Calculating Swarms," Science News, 158(20):314, 11 November 2000.
27. C.A. Rouff, M.G. Hinchey, J.L. Rash and W.F. Truszkowski, "Experiences Applying

Formal Approaches in the Development of Swarm-Based Exploration Missions," Int. J. of
Software Tools for Technology Transfer, to appear, 2006.

28. W.F. Truszkowski, M.G. Hinchey, J.L. Rash and C.A. Rouff, "NASA's Swarm Missions:
The Challenge of Building Autonomous Software," IEEE IT Prof 6(5):47-52, 2004.

29. G. Beni, "The Concept of Cellular Robotics," In Proc. 1988 IEEE International
Symposium on Intelligent Control, pp 57-62, IEEE Computer Society Press.

30. E. Bonabeau, M. Dorigo and G. Theraulax, "Inspiration for Optimization from Social
Insect Behaviour," Nature 406:39-42, 6 July 2000.

Biologically-Inspired Design:
Getting It Wrong and Getting It Right

Steve R. White
IBM Thomas J. Watson Research Center, P.O. Box 704,

Yorktown Heights, NY 10598 srwhite@watson.ibm.com

Abstract. Large, complex computing systems have many similarities to
biological systems, at least at a high level. They consist of a very large number
of components, the interactions between which are complex and dynamic, and
the overall behavior of the system is not always predictable even if the
components are well understood. These similarities have led the computing
community to look to biology for design inspiration. But computing systems
are not biological systems. Care must be taken when applying biological
designs to computing systems, and we need to avoid applying them when they
are not appropriate. We review three areas in which we have used biology as
an inspiration to understand and construct computing systems. The first is the
epidemiology of computer viruses, in which biological models are used to
predict the speed and scope of global virus spread. The second is global
defenses against computer viruses, in which the mammalian immune system is
the starting point for design. The third is self-assembling autonomic systems,
in which the components of a system connect locally, without global control,
to provide a desired global function. In each area, we look at an approach that
seems very biologically motivated, but that turns out to yield poor results.
Then, we look at an approach that works well, and contrast it with the prior
misstep. Perhaps unsurprisingly, attempting to reason by analogy is fraught
with dangers. Rather, it is critical to have a detailed, rigorous understanding of
the system being constructed and the technologies being used, and to
understand the differences between the biological system and the computing
system, as well as their similarities.

1 Introduction

There is no doubt that computing systems are complex. They are arguably the most
complex artifacts ever produced by humans. As computing systems become ever
more complex, we naturally look to other fields to understand what tools and
techniques we might bring to bear on the problems that we encounter. Computer

Please use the following format when citing this chapter:

White, S.R., 2006, in IFIP International Federation for Information Processing, Volume 216, Biologically Inspired Coop
erative Computing, eds. Pan, Y, Rammig, E, Schmeck, H., Solar, M., (Boston; Springer), pp. 21-32.

22 Steve R. White

scientists have long loolced to matliematics, and even physics, for algorithms and
methodologies. We have also, though perhaps less often, looked to biology.

But biological systems are quite different from computing systems, often
radically so. We would not want to build a computer that counts on its fingers, or
types on a keyboard. Why, even the term "biologically-inspired design" should make
us a little nervous. We do not refer to the "mathematically-inspired design" of
computing systems, or even to "physics-inspired design." We refer to mathematical
algorithms, or techniques borrowed from physics, that help us design better
computing systems. What, then, is the role of biological inspiration?

In the remainder of this paper, we turn our attention to three problems in
computing systems in which people have used biology as an inspiration to
understand and construct computing systems. The first is the epidemiology of
computer viruses, in which biological models are used to predict the speed and scope
of global virus spread. The second is global defenses against computer viruses, in
which the mammalian immune system is the starting point for design. The third is
self-assembling autonomic systems, in which the components of a system connect
locally, without global control, to provide a desired global function. In each problem
area, we look at an approach that seems very biologically motivated, but that turns
out to yield poor results. Then, we look at an approach that works well, and contrast
it with the prior misstep. Finally, we summarize the reasons why one biologically-
motivated approach fails, while another succeeds. We conclude that reasoning by
analogy is dangerous, but that a deeper understanding of the differences, as well as
the similarities, between biological and computing systems can help us avoid the
pitfalls of biologically-inspired design.

This is a cautionary tale.

2 Computer Virus Epidemiology

Ever since Len Adleman coined the term "computer virus" to describe a self-
replicating program [1], the temptation to use biological analogies for them has been
overwhelming. Computer viruses authors have used techniques such a
"polymorphism," in which a virus changes its form with each succeeding generation
in an attempt to evade detection, in much the same way as certain biological viruses
mutate rapidly to evade the body's defenses. Anti-virus programmers developed
techniques such as looking in files for bit strings that were found in known viruses
but not in normal programs, much like the mammalian immune system produces
cells that bind to viruses but not to cells in the body.

There has also been an overwhelming temptation to use models of biological
virus spread to model computer virus spread. This temptation is understandable.
Both kinds of viruses infect individuals, whether they are mammals or computers.
Both spread from one individual to another via infection vectors, whether it is
sneezing or sending files via email.

In the late 1980's, when computer viruses first became a serious problem, very
little was known. Viruses spread on diskettes, which became infected when used on
an infected computer and which could spread the infection when used on other

Biologically-Inspired Design: 23
Getting It Wrong and Getting It Right

computers. But little was understood about their global spread. In 1998, Peter
Norton, later of Norton Antivirus fame, was alleged to have said that computer
viruses were an urban myth, "[...] like the story of alligators in the sewers of New
York. Everyone knows about them, but no one's ever seen them."

2.1 Getting It Wrong

In 1991, Tippett asserted that the spread of computer viruses was like that of bacteria
in a Petri dish - that without outside intervention their growth would tend to be
exponential [2]. Though there was not a rigorous model behind these statements,
they were based on the well-known fact that many population models exhibit
exponential growth in their early phases. The reason for this is easy to see. The first
infected individual might spread the infection to two other individuals, who in turn
spread it to four more, and so on. The spread will be approximately exponential until
a large fraction of the population is infected, at which time the infection will
continue to spread, but more slowly due to the lack of uninfected targets. Assuming
that everyone in the population is susceptible to the infection, the virus will
ultimately infect 100% of the population.

Armed with this alarming prediction, Tippett and others called for emergency
action, fearing that a worldwide pandemic was just months away. But as early data
on worldwide virus infections became available, it became clear that there were
problems with this model. Virus spread was nowhere close to exponential. In fact, it
was surprisingly slow. Few viruses that were collected by anti-virus companies were
ever seen in real-world infections, and even those that were took up to a year to
become worldwide problems. Viruses never reached 100% of the population, even
after a fairly long time. In fact, their prevalence would reach a peak of at most a few
percent of the population, and then it would decrease [3].

2.2 Getting It Right

Two features of this simple model of infection are easily seen to be problematic.
First, there is an assumption that infected individuals remain in the population
indefinitely and continue to spread the infection. But infected computers do not stay
infected forever. If the virus causes system problems, and most viruses did, users
would be highly motivated to get rid of the virus. They might use anti-virus software,
if it was clear that it was a virus. They might replace their boot records, which would
have gotten rid of most boot viruses. They might have reformatted their hard drives
and started over. Ultimately, users would have gotten rid of their computers and
moved to new computers. Few of us are still using the computers that we used in
1990!

Second, there is an assumption that every individual is susceptible to infection.
But, as the computer virus problem became worse, and more people started using
anti-virus software regularly, this was no longer the case. Indeed, as anti-virus
software gained the ability to actively prevent computer viruses from running on a
system, and to stay up to date with the latest threats, many computers became
immune to a virus before the virus could ever reach them.

24 Steve R. White

A third feature of this simple model is perhaps more subtle. The model assumes
that any infected individual has an equal chance of infecting any other individual.
The model essentially assumes that the population is trapped in an elevator for
several months, and that anyone sneezing has as much chance of infecting one of the
individuals as another. In biological epidemiology, this is known as the
"homogeneous mixing" assumption [4].

For rapidly-spreading diseases, such as influenza, in populations with a high
degree of contact, such as cities, this is still a pretty good model. But computer users
did not exchange diskettes in this pattern. They exchanged diskettes relatively
infrequently, and often only within a group of close co-workers. Diskette exchanges
between random people in the world occurred very infrequently. It turned out that
the topology of how an infection may spread was a critical, and previously
overlooked, feature of a successful model.

Kephart et al. described models of the epidemiology of computer viruses that had
a rigorous basis and took these features into account [5, 6]. In these models, standard
biological epidemiology was used to describe individuals who were susceptible,
those who were infected and contagious, and those who were both cured and
immune. Individuals who were susceptible could become infected, and could later
become both cured and immune. The models supported standard epidemiological
results such as epidemic thresholds: if the virus is killed off faster than it spreads,
there is no epidemic. This was a likely explanation for the observation that most
viruses were never seen in real-world infections. They were too inept at spreading or
never got the chance. Similarly, epidemics in the model never reached 100% of the
population. They were killed off by disinfecting infected computers or by
preventative measures.

Instead of assuming homogeneous mixing, Kephart et al. modeled infections as
spreading on a directed graph, in which the nodes were computers and the arcs
denoted a pathway by which a particular computer could infect another. In very
sparse graphs, which are likely the correct model for diskette-based virus spread, it
was harder for an epidemic to start and easier for it to die off In highly clustered
graphs, representing more diskette sharing inside workgroups and less between them,
viruses that were rampant in one part of the graph seldom leaked out to other parts of
the graph, explaining the observation that some university computer labs had
rampant, ongoing infections while more controlled environments rarely did.

It turned out that virus epidemiology in computer systems bore deep and striking
similarities to the biological world. The same models could represent viruses in both
worlds. The thing that distinguished the directed graph models from the "exponential
growth" model was that it was not a case of reasoning by analogy. It had a rigorous
mathematical basis and an explicit set of assumptions that could be validated in the
real world. It was inspired by biology, but grounded in the actual system at hand.

3 A Digital Immune System

The mammalian immune system is very complex, and has evolved over millions of
years to protect individuals against a very large and ever changing array of threats. It

Biologically-Inspired Design: 25
Getting It Wrong and Getting It Right

has a number of mechanisms, both innate and adaptive, to find and destroy foreign
organic material that may pose a threat to the body.

The immune system is an obvious place to look for inspiration in combating
cyberspace threats such as computer viruses. Before we do so, let us look at some of
the mechanisms that it uses.

When viruses enter the bloodstream, some of them are engulfed and destroyed by
macrophages (white blood cells), which then present antigens (proteins from the
bacterium or virus) on their surface. Cells called T cells are capable of recognizing
particular antigens by binding to them chemically. There are a vast number of T cells
in the bloodstream, and collectively they are capable of recognizing a vast number of
different antigens. When a particular T cell recognizes an antigen, it is stimulated to
reproduce, so there are more T cells to find instances of that virus. It is also
stimulated to produce antibodies that bind to the antigens on the surfaces of the virus.
Viruses that are coated with antibodies are easier for macrophages to ingest. So, in
response to an invading virus, the immune system produces a huge number of
antibodies that help kill off that particular virus.

T cells that happen to recognize proteins found in the body are weeded out at an
early stage in their lives, so the body does not (usually) produce antibodies against
itself Only T cells that might recognize viruses and do not recognize the body's cells
(the "self) are allowed to circulate [7].

3.1 Getting It Wrong

We begin with the problem of detecting a computer virus in the first place.
Forrest et al. suggest a method for detecting computer viruses that is very

strongly rooted in the mammalian immune system [8]. Given a set of files that they
want to protect on a PC, they divide the files into a collection of bit strings of a fixed
length, say 32 bits long. They then generate 32-bit "detector" bit strings at random
and discard those that have a match to the strings that make up existing files on the
PC. This is very much like the immune system creating T cells, and weeding out
those that attach to proteins in the "self" Forrest et al. calculate the number of non-
self detector strings that will be needed in order to detect new or changed files (i.e.
non-self files) with a given probability.

A sufficient number of non-self detector strings is then generated, and the PC is
scanned periodically to determine if any of the non-self strings are found within the
files. This is very much like the immune system spreading T cells throughout the
body, and reacting to any of them binding to non-self proteins.

So far, this is very plausible. It is a general method for detecting changes in the
system, that is, files that have come to look different than they were to begin with.
This could well indicate the presence of a computer virus.

Let us examine what it would take to implement this on a typical PC today. In
doing so, we will make assumptions that more strictly parallel biology than Forrest et
al. might advocate. The model that they report allows, for instance, only approximate
matching of detector strings to strings in the files of the PC as a way of increasing its
efficiency. Here we will assume exact matching.

26 Steve R. White

In the experiments involving this method, the authors typically assume a rather
high probability of failing to detecting a change. 0.02 is a typical probability that is
used. We will set a stricter standard, as biology does. Let us suppose that we want to
detect changes on a typical PC and we want the probability of failing to detect a
single-bit change in one of the 32-bit strings in the files to be less than 2"". This is
not an unreasonable bound, given that a typical PC with 100GB of storage has -2"°
bits on it which, if we separate these into 32-bit strings for this method, yields 2"
such strings. If we randomly change all 2^', we would only fail to detect 1000 of the
changed strings.

Using the equations developed in [8], we estimate that we will need nearly lO"
detection strings that are each 32 bits long to achieve the required detection
probability. If this were the mammalian immune system, that would be a small
number of T cells. In a computer, however, that many detection strings would
require nearly 400GB of storage, which is more than a typical PC has these days.
Plus, scanning for the presence of lO" detection strings would take quite some time!

Functionally, this is a method of determining if new files have been added to the
PC, or if existing files have changed. Let us consider another method of
accomplishing this goal. Suppose we calculate a 32-bit hash, or checksum, for each
file on the computer, and store it away along with the path and filename of the file.
This will allow us to detect changes in files with a failure rate of 2"'̂ per file. To be
fair, the two detection methods are not functionally identical. The hash method can
detect deleted files, whereas the detector method cannot. The detector method has a
higher probability of detecting multiple-bit changes. Nonetheless, it is an instructive
comparison.

If we keep 4 Bytes (32 bits) of hash per file, and -32 Bytes of path and filename
information, we need -36 Bytes per file. A typical PC might have ~I0' files on it, so
we need less than 4MB of storage for our hash database. If all we want to do is detect
changes to files on our PC, this is a much more economical way to do it.

This surprising economy is not available to the mammalian immune system.
While it is easy to implement hash functions for files on a computer, it is difficult to
think of a way that evolution could have provided a hash function for protein
sequences, or even what such a hash function would look like. Biology has vast
numbers on its side, so producing billions of T cells is a natural approach.
Computing has much more strict limits on its resources, but much more flexibility in
its computations.

A closer examination of the assumptions made by the detector model reveals a
curiousity. It assumes that the makeup of the "self that the method defends is
constant. That is, it assumes that strings that initially matched strings in the "self
will match them in the future, and that strings that did not match strings in the "self
will not match them in the future. This is a good assumption in mammals, where the
proteins that are expressed on the surfaces of cells are determined by the organism's
genetic makeup, and do not vary over time.

It is not a good assumption, however, in computer files, which change all the
time for valid, benign reasons. New files are created, existing files are updated, and
old files are deleted. There is no static "self in computers. Just because a file
changes does not indicate the presence of a virus. Quite the contrary, the number of
files that change due to viruses is much, much smaller than the number that change

Biologically-Inspired Design: 27
Getting It Wrong and Getting It Right

for benign reasons. In this case, the computer world is very different from the
biological world.

In a subsequent paper based on this same approach [9], Somayaji et al. state:

"Although we believe it is fruitful to translate the structure of the
human immune system into our computers, ultimately we are not
interested in imitating biology. Not only might biological solutions
not be directly applicable to our computer systems, we also risk
ignoring non-biological solutions that are more appropriate. A more
subtle risk, however, is that through imitation we might inherit
inappropriate 'assumptions' of the immune system."

This is the ongoing risk of biologically-inspired design.

3.2 Getting It Right

If we cannot rely on a distinction between self and non-self to recognize computer
viruses, how can we recognize them? Perfect recognition of computer viruses -
determining that an arbitrary program is a virus and never making a mistake - is
equivalent to the halting problem [1, 10]. Nevertheless, there are a variety of
heuristics that, in practice, turn out to be remarkably effective. Many viruses are
variants of older, known viruses, and can often be found by scanning for strings that
are found in known viruses but that are unlikely to be found in normal programs.
Many viruses use a few common tricks, like self-encryption to attempt to hide from
scanners, so noticing that a program uses one of these tricks may lead us to suspect it
of being a virus.

Unfortunately, all of these heuristics have false positives - they occasionally
accuse a perfectly normal program of being a virus. It would be bad if the system
acted on this accusation without being sure, erasing the accused file or, worse,
attempting to remove the "virus" from the file.

In a system described by Kephart et al. [11, 12], heuristics were used to identify
files that might contain a virus, and a copy of these files was sent to a central virus
analysis lab. Here, an important difference between biological and computing
systems was exploited. In biological systems, lots of things replicate themselves:
DNA, viruses, our body's cells and entire organisms. Self-replication is one of the
most important capabilities of all life. In computing systems, however, almost
nothing that is really usefiil undergoes self-replication. Almost without exception, if
it self-replicates, it is a computer viruses, and hence it is undesirable. So the virus
analysis lab isolated the suspect virus in a virtual machine and tried to make the virus
self-replicate. If it did, it was indeed a virus.

Multiple replicas were gathered, so that the system could take into account any
variation between them. The replicas were analyzed, and strings were extracted that
detected all of the replicas but were very unlikely to be found in normal programs.
The goal of this latter step was much the same as the goal of the immune system in
producing T cells: create something that will recognize the virus but will not also
recognize good cells/files. Because it would be infeasible to follow biology closely

28 Steve R. White

and test the string against every file tliat exists or will exist on the Earth, a statistical
characterization of a large collection of normal programs was used to estimate the
probability that the string would be found in any normal program. Only strings with
extremely small probabilities were used. At the same time, an algorithm for
disinfecting the file - for removing the virus and returning the file to its original state
- was derived.

Once these detection strings and disinfection algorithms were extracted and
tested, they were sent back to the infected system, which then used them as a highly
specific way of finding and disinfecting that particular virus. At the same time, they
were made available worldwide to protect computers that were not yet infected. In
most cases, this was all done automatically, with quality that exceeded human
analysis, and was complete from detection to cure in a few minutes.

While this process bears some resemblance to the way the mammalian immune
system works, it is really very different. In fact, it bears more resemblance to an
early 20* century theory of the mammalian immune system called "instruction
theory," in which antigens themselves caused the formation of antibodies, but only
after the antigen appeared and by somehow using parts of the antigen in antibody
formation [13]. This theory was disproven shortly after it was proposed. But
computers are not mammals, and mechanisms that work poorly in biology may be
just the ticket in computing.

In computing, what constitutes "self and "non-self changes constantly, so
observing a computer virus reproduce is one of the few sure ways to determine that it
really is a virus and not just a normal program. Furthermore, crafting specific
defenses for specific viruses works very well in computing system, where we cannot
have billions of detectors for "non-self" Once again, we see how critical it is to
understand the differences between biological and computing systems, as well as the
similarities.

4 Self-Assembling Autonomic Systems

Since the first paper outlining the vision of autonomic computing [14], biology has
been used as an analogy for how large computing systems should work. The
autonomic nervous system plays an important role in regulating critical systems in
the body - such as breathing, heartbeat, digestion, and eye focus - without involving
our conscious minds. This lets our conscious mind focus on conceptual problems
with fewer distractions. By analogy, autonomic computing seeks to create computing
systems that are largely self-regulating, allowing system administrators to tell the
systems what to do at a high level, and then have the systems themselves figure out
how to do it.

The autonomic nervous system is one possible biological source of inspiration
for autonomic computing. Let us examine another.

In the early stages of embryonic development in mammals, cells divide to form a
blastocyst, a roughly spherical collection of cells that start out nearly identical. As
development proceeds, these cells reproduce and differentiate to form structures,
such as arms and a spine, based on their own genetic information and their local

Biologically-Inspired Design: 29
Getting It Wrong and Getting It Right

chemical environment. Remarkably, there is no central planning agent that tells the
body how to develop.

Nevertheless, trillions of cells acting in their local environments manage to
develop into extremely complex structures such as eyes, muscles and brains.
Consider the circulatory system, which must carry blood to all parts of the body.
How does the developing circulatory system know where to grow new capillaries?
The answer, of course, is that it does not, at least in the sense that there is no
centrally managed plan for where they should be. Rather, cells that are getting
insufficient oxygen generate growth factors that stimulate nearby capillaries to grow.
Thus cells in regions of the developing body that are not yet getting enough oxygen
stimulate capillary development in that region until they are getting enough oxygen,
at which time they stop [15].

The mammalian body has countless mechanisms that direct its resources to
places and for purposes that most benefit the body. Mechanisms that enable
distributed self-assembly of complex features are among the most powerful.

4.1 Getting It Wrong

Let us focus on one important aspect of self-assembly in computing systems:
determining where in the system to put a new server that has become available. We
have a large computing center, with many application environments. Each
application environment is a collection of the computing resources needed for a
particular application - for a web server, for instance, or a portfolio analysis
application. We want to figure out into which application environment we should put
our new server, and how best it can be used within that environment.

In the developing blastocyst, it does not matter where a new cell is placed. It
develops according to what it senses of its local environment. Suppose we held
slavishly to biology and did the same thing with our new server. There is no sense of
"local environment" in our collection of application environments. Logically, they
are all peers. So we let the server choose the first application environment that it
finds in a directory of such things.

We will even credit the application environment with good sense about how to
use the server. Perhaps it is asked to become a web server to handle more customer
requests. Perhaps it becomes a host for that processor-intensive portfolio analysis to
achieve more accurate results.

Of the biologically-inspired approaches that we have discussed so far, this one
has the most obvious flaws. Clearly, choosing a random application environment into
which to incorporate the server is unlikely to be the best choice. The chosen
environment may be handling its traffic just fine, whereas another environment is
starved for resources.

Servers are not cells. Cells reproduce, and their population can grow nearly
limitlessly to serve the needs of the developing organism. Servers, on the other hand,
are a highly constrained resource. Putting a server to work on one application often
means that it is not available for another application.

30 Steve R. White

This approach is too distributed. By not taking advantage of global information,
in this case information about the value of an additional server to the various
applications that might make use of it, we are stuck with a very suboptimal result.

4.2 Getting It Right

A traditional approach to allocating a new server is for system administrators to
examine the various application environments in detail and plan out, quite a long
time in advance, where that new server is most needed.

This can be made less burdensome for system administrators by allowing them to
specify policies about how resources such as servers should be allocated. The web
server application may be highly important for customer satisfaction, and the policy
might be to allocate new servers to it until it is meeting its performance goals.
Servers not needed for this application could be given to the less important but
computationally intensive portfolio analysis application that can use as many servers
as it can get.

Research is underway to imbue servers with the ability to incorporate themselves
into an application environment, once the choice of environment is made. They can
find the other resources that they need to operate and hook themselves up without the
need for manual intervention by system administrators [16].

This idea can be extended to the dynamic operation of the system. Suppose, in
our previous example, that the load on the web application varies, that it is high
during the day and low at night. A global resource arbiter can be given a policy that
instructs it to give as many servers as needed to the web application, but to move any
servers that it does not need to the portfolio analysis application. We would see
servers moved to the financial application in the morning, and then moved back to
the computationally intensive application in the evening.

More generally, application environments can have a quantitative measure of the
benefit that they could provide if given one or more additional servers. A global
mechanism could then arbitrate between the environments to determine the best
global allocation of all servers [17].

This keeps the best features of self-assembly while achieving globally optimal
utilization of scarce resources. In large part, system administrators could be relieved
of the burden of planning out, in detail, which environment should get which server
at any given moment, and the burden of adding that server to that environment.
Instead, administrators could set higher-level policies and let the system figure out
how best to achieve them.

Again, this is not the way cells work in the body. Cells do not transform
themselves from liver cells to brain cells when we are working on hard math
problems, nor do kidney cells become muscles when we run. But principles like self-
assembly from biological systems can be applicable to computing systems if we
understand the differences between the systems.

Biologically-Inspired Design: 31
Getting It Wrong and Getting It Right

5 Conclusions

In this paper we reviewed three areas in computing in which people have drawn
inspiration from biology. In the first, computer virus epidemiology, we saw that
simple analogies with biological virus spread do not capture essential features of
computer virus spread, but that a rigorous and biologically-based model can. In the
second, we saw that following the workings of the biological immune system too
closely can result in an unwieldy and inaccurate technology for detecting computer
viruses, whereas a deep understanding of how computers differ from biological
organisms can lead us to a digital immune system that works extremely well. In the
third, we saw that a simple analogy with self-assembling biological systems results
in decisions about where to place a new server in a data center that are clearly wrong,
while an understanding of how global information differs between biological
systems and our data center helps us use the best features of biological self-assembly
and avoid suboptimal solutions.

Biology does things for its own reasons. In the mammalian body, development
must be consistent with evolution and the mechanisms available to it. We cannot
grow a hand without growing an arm at the same time. And it must work with the
materials available to it - cells but not electronic circuitry.

In engineering, we face different constraints. We are able to harness incredible
computational power, but we do not get access to trillions of self-reproducing parts.
Hence the solutions that we adopt in engineering will often be very different from
the solutions adopted by biology.

Reasoning by analogy is dangerous. It tempts us to ignore the underlying
assumptions that make a technique work in one field but fail in another. Instead, we
must know the assumptions that are being made in both computing and biological
systems. We must have a rigorous underlying model, preferably a mathematical
model, of the systems that we are building. And we must know when a computing
system does not behave like a biological system. In many cases, this knowledge can
help us find a solution that is even better than those used in biological systems.

We can be inspired by biology. Indeed, we should be. Biology is very inspiring
and can often lead to new ways of thinking about computing systems. But we must
avoid the temptation of letting it dictate our designs.

6 Acknowledgements

The author would like to thank Jeffrey O. Kephart and David M. Chess for many
insightful conversations.

7 References

1. F. Cohen, Computer Viruses, Ph.D. thesis, USC (1985)

32 Steve R. White

2. P.S. Tippett, The Kinetics of Computer Virus Rephcation: A Theory and Preliminary
Survey, Safe Computing: Proceedings of the Fourth Annual Computer Virus and Security
Conference, New York, NY, March 14-15, 1991, p. 66-87

3. J.O. Kephart, S.R. White, Measuring and Modeling Computer Virus Prevalence, in
Proceedings of the 1993 IEEE Computer Society Symposium on Research in Security and
Privacy, Oakland, CA, May 24-25, 1993, p. 2-14

4. N.T.J. Bailey, The mathematical theory of infectious diseases and its applications, second
edition, Oxford University Press, New York, 1975

5. J.O. Kephart, S.R. White, Directed-Graph Epidemiological Models of Computer Viruses, in
Proceedings of the 1991 IEEE Computer Society Symposium on Research in Security and
Privacy, Oakland, CA, May 20-22, 1991, p. 343-359

6. J.O. Kephart, S.R. White, D.M. Chess, Computers and epidemiology. Spectrum, IEEE, Vol.
30, Issue 5, May 1993, p. 20-26

7. R.A. Goldsby, T.J. Kindt, B.A. Osborne, Kuby Immunology, fourth edition. New York;
W.H. Freeman, 2000

8. S. Forrest, A.S. Perelson, L. Allen, R. Cherukuri, Self-Nonself Discrimination in a
Computer, in Proceedings of the 1994 IEEE Symposium on Research in Security and
Privacy, Los Alamitos, CA: IEEE Computer Society Press, 1994

9. A. Somayaji, S. Hofineyr, S. Forrest, Principles of a Computer Immune System, in
Proceedings of the 1997 New Security Paradigms Workshop, Langdale, Cumbria, UK,
1997

10. F. Cohen, Computer Viruses: Theory and Experiments, in Minutes of the 7* Dept. of
Defense / NBS Computer Security Conference, September 24-26, 1984

11. J.O. Kephart, G.B. Sorkin, M. Swimmer, S.R. White, Blueprint for a Computer Immune
System, in Proceedmgs of the Seventh International Virus Bulletin Conference, San
Francisco, CA, October 1-3, 1997

12. S.R. White, M. Swimmer, E.J. Pring, W.C. Arnold, D.M. Chess, J.F. Morar, Anatomy of a
Commercial-Grade Immune System, in Proceedings of the Ninth International Virus
Bulletin Conference, September/October 1999, p. 203-228

13. A.M. Silverstein, Darwinism and immunology: from Metchnikoff to Burnet, Nature
Immunology, Vol. 4, No. 1, p. 3-6, 2003

14. P. Horn, Autonomic Computing: IBM's Perspective on the State of Information
Technology, October 2001, http://www.research.ibm.com/autonomic/manifesto/
autonomic_computing.pdf

15. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the
Cell, fomth edition, Garland Science, New York, Chapter 22

16. D.M. Chess, A. Segal, I. Whalley, S.R. White, Unity; Experiences with a Prototype
Autonomic Computing System, in Proceedings of the First International Conference on
Autonomic Computing (ICAC'04), May 17-18, 2004, New York, NY, p. 140-147

17. G. Tesauro, R. Das, W.E. Walsh, J.O. Kephart, Utility-Function-Driven Resource
Allocation in Autonomic Systems, Proceedings of the Second International Conference on
Autonomic Computing (ICAC'05), June 13-16, 2005, Seattle, WA, p. 342-343

On Building Maps of Web Pages with a Cellular
Automaton

H. Azzag^, D. Ratsimba'', D. Da Costa^, C. Guinot^'^, and G. Venturini^

^ Laboratoire d'Informatique de I'Universite de Tours,
Ecole Polytechnique de I'Universite de Tours - Departement Informatique

64, Avenue Jean Portalis, 37200 Tours, France.
Phone: +33 2 47 36 14 14, Fax: +33 2 47 36 14 22

{hanene. azzag, venturiiii}@univ-tours. f r
david.dacostaQetu.univ-tours.fr

^ C.E.R.I.E.S.,
20 rue Victor Noir, 92521 Neuilly sur Seine Cedex.

christiane.guinotOceries-lab.com
^ Laboratoire ERIC, Universite de Lyon2, Bat. L, 5 avenue Pierre Mendes-FVance

69676 Bron Cedex
dratsimbQclub-internet.fr

Abs t rac t . We present in this paper a clustering algorithm which is
based on a cellular automaton and which aims at displaying a map of
web pages. We describe the main principles of methods that build such
maps, and the main principles of cellular automata. We show how these
principles can be applied to the problem of web pages clustering: the
cells, which are organized in a 2D grid, can be either empty or may
contain a page. The local transition function of cells favors the creation
of groups of similar states (web pages) in neighbouring cells. We then
present the visual results obtained with our method on standard data
as well as on sets of documents. These documents are thus organized
into a visual map which eases the browsing of these pages.

1 Introduction

The aim of web pages visualization is to present in a very informative and in
teractive way a set of web documents to the user in order to let him or her
navigate through these documents. In the web context, this may correspond
to several users' tasks: displaying the results of a search engine, or visualiz
ing a graph of pages such as a hypertext or a surf map. In addition to web
pages visualization, web pages clustering also greatly improves the amount of
information presented to the user by highlighting the similarities between the
documents [1]. These similarities take into account the content of the pages.
Several systems have been designed with the double aim of creating groups
among web pages and of visualizing such groups. If one considers the visual
models of topic maps [2] [3], and compared to graph displaying models such as
(Kartoo, Mapstan, TouchGraph, GoogleBrowser) and to other plot based vi-

Please me the following format when citing this chapter:

Azzag, H., Ratsimba, D., Da Costa, D., Guinot, C , Venturrini, G., 2006, in IFIP International Federation for Information

Processing, Volume 216, Biologically Inspired Cooperative Computing, eds. Pan, Y, Rammig, R, Schmeck, H., Solar, M.,

(Boston: Springer), pp. 33-42.

34 H. Azzag, D. Ratsimba, D. Da Costa, C. Guinot, and G. Venturini

sualization [4], then the advantages of topic maps are the following: they may
represent an important number of documents and of created clusters, they may
provide a global view which can be easily zoomed, and most importantly, they
use a cartographic metaphor which manipulation is easily learned by the user.
We consider in this work a set of n web pages that we would like to repre
sent as a topic map in order to let the user browse these pages. This problem
can be instantiated in several ways: the automatic construction of a hypertext,
the visual presentation of search engines results, the automatic creation of web
sites maps. The map must represent these pages in such a way that thematic
clusters will clearly appear. To build such a map, one must be able to measure
the similarity between pages, to detect groups among the pages, to visualize
such groups and the neighbourhood relationships between the pages (similar
pages must be displayed together on the map). By reaching this goal, one over
comes the traditional limitations of text-based interfaces: In the case of search
engines, a greater number of results can be explored. In the case of hypertext
construction, the discovered neighbourhood relationships will naturally act as
hyperhnks.

In the remaining of this paper, Section 2 describes the main principles of
the methods that visually cluster web pages, as well as the main properties of
cellular automata. Section 3 present our algorithm, a new method for visual
clustering with cellular automata. In Section 4, we present the results obtained
by our method on benchmark data and on web pages. We conclude by presenting
the limits of our method as well as the perspectives which can be derived from
this work.

2 Principle of documents maps and cellular automata

2.1 D o c u m e n t s visual clustering and maps

In order to solve the problem at hand, we must study the methods that cluster
documents into a visual map [2] [3]. Kohonen maps are one of the most well
known examples [5] [6]. Other similar methods have been recently applied to
the generation of document maps: it is the case for instance of a biomimetic
approach which uses artificial ants to sort objects (i.e. documents) on a 2D grid

[7].
The main characteristics of these visual representations are the following:

the map is built from the set of documents by calling a clustering algorithm the
results of which can be directly visualized. These results are organized in a 2D
plan. Documents which are close to each other on the plan should be similar
from their content point of view (thus a correlation should appear between the
location of the documents on the grid, and their textual similarity). Documents
represented on the map can be annotated with text labels in order to let the
user better understand the clusters which have been found. These labels can
be the title of documents, or keywords extracted from the documents, and

On Building Maps of Web Pages with a Cellular Automaton 35

also colours which indicate the density of documents in a given area of the
map. In conclusion, these maps must achieve the following properties: to create
groups of documents (with informative neighbourhood relationships that are
representative of the textual similarity between documents), to inform the user
on the size of groups, the thematic content of a group (by displaying for instance
common keywords in documents that belong to this group), to zoom and provide
additional details about a document (title, opening of the document).

2.2 Principles of cellular automata and application in visual
clustering

Among all the methods related to clustering [8], researchers have developed
models which are inspired by biological systems. As far as we know, no clustering
algorithm making use of cellular automata has been defined yet. However, the
cellular automata model is known since many years and has many interesting
properties such as those which can be found in the popular game of life [9]: the
emergence of complex behaviours that result from local and simple interactions.
We show in the following that this model, which has been used in numerous
domains [10], can make valuable contributions to the visual clustering problem
and to the building of web pages maps.

We remind here the reader of basic principles used in cellular automata
(CA). A CA is defined by a 4-tuple denoted by (C, S, V, S). C = {ci,, CNCCU }
represents the set of cells where NCell remains constant over time. S =
{si,, Sfc} is the finite set of states that each cell will be able to take. The state of
a cell Ci is denoted by Ci{t). V denotes the neighbourhood between cells which
gives a spatial structure to the cells. For each cell Cj, we denote by V{ci) its set
of neighbouring cells. In this work, we are interested in a 2D structuration of the
cells which are thus placed on an N x N matrix or grid (as a consequence the
number of cells is NCell = N"^). The neighbourhood of a given cell is a square
with an edge of size v and which is centered on the cell. This neighbourhood
is such that the grid is toroidal (top connected to bottom, left side connected
to right side). The neighbourhood of a cell is thus a set of ŵ cells. The local
transition function denoted by 5 determines the next state of a given cell as a
function of its neighbouring cells. Finally, we call configuration of the CA at
time t the state vector CA{t) = (ci(t), .•.,CNCeii(t))- A CA evolves from CA{t)
to CA{t + 1) by applying S to each cell, either in a synchronous way (parallel
mode) or in an asynchronous way (parallel or sequential mode).

The main principle of our method is to consider that the states of the CA
can be the documents themselves. Then the next step is to adapt the local tran
sition function in such a way that states representing similar documents appear
in close location on the grid. Once a stable configuration has been obtained in
which similar documents become located close to each other, it is straightfor
ward to create a map from this grid, and we will show in section 4.3 that these
results check the desired properties mentioned in the previous section.

36 H. Azzag, D. Ratsimba, D. Da Costa, C. Guinot, and G. Venturini

3 A CA model for documents visual clustering

In the following, the n documents (or data) to be clustered are denoted by
di,...,dn and Sim{i,j) G [0,1] denotes the similarity between two documents
di and dj. We have considered a 2D CA where the NCell cells are structured
on a squared grid.

The set of possible cells states is equal to 5 = {empty, d i , . . . , d„}. In other
words, each cell will be either empty or may contain one (and only one) doc
ument or data. At each simulation step, the states of cells will be possibly
modified according to local transition rules which will aim at letting similar
states (documents) appear at close locations on the grid.

The size of the grid has been empirically determined as in [11] and is com
puted with the function A'' = i?(\/3n) + 1- This size is supposed to give enough
space (A''̂ cells but n data only) to the spatial organization of the clusters. The
size of the neighbourhood described in the previous section is the edge v of
the square centered on each cell and is empirically determined by the following
formula: v = E{N/10) + 1.

We use the following definition in our algorithm: a cell is isolated if its
immediate [v = 1) neighbourhood contains less than 3 non empty cells. We
have decided to obtain non overlapping clusters: thus a state di may appear
in one cell at a time. Therefore, we use a list of states denoted by L which
represents the list of documents which do not appear on the grid and that
remain to be placed. Initially, L contains all the documents and the states of
cells are all empty.

The local rules for evolving the states of cells are the following, firstly for
an empty cell Cij:

- R l : If dj is isolated Then (with probability 1 - P ' = 0.25) Cij{t + 1) ^
dk, where dk is a randomly selected document of L (and provided that
Simd'^(,v(cij){dk,d'^) > Threshold{t))

- R2 : If Cij is not isolated Then Cij{t -1-1) <— dfc, where dk is either a ran
domly selected document of L (with probabihty P = 0.032), or (with prob
ability 1 — P) the document of L which is the most similar to the docu
ment represented by Cij neighborhood, (and provided that, in both cases,
Sim4l^^v(cij){dk,d'^.) > Threshold{t)).

For a cell Cij that contains a document dk (i.e. Cij{t) = dk), the transition
rules are the following:

- R3 : If Cij is isolated. Then Cij{t+ 1) <— empty with a probability P ' = 0.75
{dk is placed back in L).

- R4 : Else if Sim^' ^via){dk,d'^.) < Threshold{t), Then Cij{t -I- 1) <— empty
and dk placed back in L

In all other cases, the cell state remains unchanged {Cij{t + 1) <— Cy(i)) .
One can notice that the values of P and P ' thresholds have been obtained
experimentally.

On Building Maps of Web Pages with a Cellular Automaton 37

In order to apply these rules to cells and in order to avoid conflicts when
assigning on the grid the data of L, we have considered that one cell will evolve at
a time (sequential evolution of the CA). We have tested several ways of selecting
the cell to which the rules are applied at the current time step: we have kept a
randomly selected order, once for each run of the algorithm (a permutation of
the N'^ cells is randomly generated at the beginning of the algorithm).

In the rules, we mention a threshold Threshold{t) which evolves over the
simulation steps t. This threshold is initialized to the maximum similarity value
observed in the data set, and then slowly decreases through the run. Initially,
the documents located close to each others on the grid are thus very similar to
each others, thus forming highly similar "seeds" for the future clusters. At each
time step, Threshold{t) is decreased of a constant quantity (equal to 1/200 of
the standard deviation observed in the similarity values). This decreasing is also
such that the algorithm converges because documents will be very unlikely to
be removed from the grid once Threshold(t) becomes low.

4 Results

4.1 Standard data

In order to validate the clustering abilities of our algorithm, we have applied
it first on standard benchmark databases from the Machine Learning Reposi
tory [12]. The similarity measure that we have used is based on an Euclidean
distance.

We have used the same set of parameters for all tested databases. Our first
experiments have consisted in performing numerous tests in order to determine
an average and satisfying set of parameters. We have run our algorithm on the
13 mentioned databases. Each parameters set has been tested over 20 runs. More
than 1500 parameters sets have been tested. The obtained conclusions are the
detection of correlations between parameters and the obtaining of a satisfying
set of parameters with a low error rate (Rand measure), a high purity and a
good number of found clusters (close to the real number of clusters).

The visual results presented in figure 1 illustrate the clusters found for some
databases (see table 1 for the complete results). One must notice that the lay
out of the clusters corresponds to known properties of the databases, Hke for
instance in the cases of the Iris and Wine. The execution times were measured
on a PC AMD Athlon64 792MHz with 500Mo of RAM, and an implementation
in a Java Applet (the execution is therefore slower than in a C implementation
for instance).

A quantitative analysis of the results is presented in table 1. The perfor
mances of our CA are quite correct compared to the ascending hierarchical
clustering (AHC) which is a widely used clustering algorithm.

38 H. Azzag, D. Ratsimba, D. Da Costa, C. Guinot, and G. Venturini

• > ' - • - - ; ' l r

•*.?

Soybean Iris Thyroid Wine

Fig . 1. Visual results obtained (tiie colors indicate the real classes)

Table 1. Results obtained on standard databeises (CF represent the number of found
clusters, PR the purity , Ec the error measure and Tsxe the execution t ime

Databases

CF

Cellular au tomata

P R EC TEXC

AHC

CF PR EC TEX

A r t l
Art2
Ar t3
Art4
A r t s
Ar te
CE.R.I .E.S.
Glass
Iris
P ima
Soybean
Thyrod
Wine

6.25 [1.26]
6.35 [1.39]
7.70 [1.38]
6.25 [1.04]
8.65 [1.31]
4.75 [0.62]
5.80 [1.2]

5.50 [0.92]
4.75 [1.18]
5.50 [1.48]
3.95 [0.28]

4.80 [0.6]
4.70 [0.66]

0.87 [0.09]
0.97 [0.04]
0.92 [0.06]
1.00 [0.00]
0.63 [0.19]
1.00 [0.002]
0.75 [0.18]
0.56 [0.16]
0.95 [1.00]
0.67 [0.08]
0.96 [0.11]
0.85 [0.12]
0.90 [0.1]

0.15
0.20
0.20
0.29
0.14
0.02
0.18
0.36
0.15
0.47
0.02
0.33
0.13

[0.03
[0.09
[0.05
[0.04
[0.03
[0.01
[0.02]
[0.05
[0.05
[0.03
[0.05
[0.07]
[0.04

4.3s
28s
59s
1.2s
7.5s
8.0s
3.5s
3.7s
0.8s
70s
0.4s
2.2s
2.6s

0.84 0.15
0.98 0.14
0.89 0.16
1.00 0.13
0.78 0.08
1.00 0.03
0.56 0.24
0.49 0.43
0.88 0.13
0.48 0.48
1.00 0.08
0.84 0.35
0.84 0.20

0.92s
23.73s
32.34s
0.11s
14.25s
0.91s
0.25s
0.14s
0.05s
9.52s
0.00s
0.14s
0.06s

Table 2. Textual databases tested

Databases Size (# of documents) Size (Mb) # of real classes

CE.R.I.E.S.
AntSearch
WebAcel
WebAceB

259
332
185

2340

3.65
13.2
3.89
19

17
4
10
6

Table 3 . Results obtained on textual databases

Databases Cellular au tomata

Ec CF PR

AHC

Ec CF PR

AntSearch
CERIES
WebAcel
WebAce2

0.35 [0.06] 4.2 [0.6] 0.59 [0.21]
0.62 [0.12] 3.6 [0.9] 0.27 [0.10]
0.48 [0.10] 3.8 [0.9] 0.36 [0.21]
0.15 [0.07] 8.0 [0.6] 0.81 [0.27]

0.17 6,00 0.79
0.36 3,00 0.29
0.28 4,00 0.27
0.29 3,00 0.79

On Building Maps of Web Pages with a Cellular Automaton 39

CE.R.I.E.S. AntSearch WebAce2 WebAcel

Pig. 2. Results on the textual data bases

4.2 Textual data

We have applied our algorithm on textual databases (see table 2). In this case,
the similarity measure is computed with specific algorithms. The CE.R.I.E.S.
database contains 258 texts dealing with healthy human skin [13]. The AntSearch
database contains scientific documents dealing with several different subjects
(73 documents about scheduling problems, 84 about image processing and pat
tern recognition, 81 about network and Tcp-Ip, and finally 94 about 3D and
VRML courses). We have used a search engine to extract these documents from
the web. The WebAce databases contain web pages extracted from Yahoo! cat
egories [14].

We use the cosinus measure in order to compute the similarity between doc
uments. Each document is represented as a vector of word count but weighted
according to the tf-idf scheme [15]. The resulting clusters are analysed with the
same methodology as the previous numeric databases.

We present in figure 2 the obtained clusters (see table 3 for the complete
results). We a priori know that the Webacel and CE.R.I.E.S. databases are
rather difficult for many clustering algorithms because the similarity is not very
informative. So the poor results are not surprising. However, we wish to check if
the generated map makes sense (because the found clusters are representative of
the similarities, but the similarities are not representative of the expert a priori
clustering). With the Webace2 and Antsearch databases, the obtained maps
look now much better and one may clearly distinguish the original clusters on
the obtained 2D grid.

4.3 M a p generat ion

From the previously created grid, we have generated a " browsable " map in
the following way: the 2D positions of the documents are respected and the
grid is converted into an HTML table. Each cell of the table contains one
document and is annotated using the beginning of the document's title. Then,
with JavaScript commands, we may add interactions to the map. Clicking on
a cell opens the corresponding document. Zooming the map is possible directly
with the browser using the mouse wheel. The resulting map thus represents
the similarities between documents, the title of documents and the possibility

40 H. Azzag, D. Ratsimba, D. Da Costa, C. Guinot, and G. Venturini

to zoom and open documents. It is possible to visually evaluate the size of
clusters, and also to perform an information retrieval task by exploring the set
of documents by their content.

We present in figures 3 and 4 a complete map generated from the Antsearch
database and a specific zoom on figure 4. Generating the keywords is very simple
(and fast) but gives a basic explanation about the clusters. The beginnings of
titles are complementary to each others and provide a good idea of the topic a
given area of the map deals with. When one observes the titles, one may notice
that these titles have many significant keywords in common. A simple and
straightforward extension of this work would consist in extracting the keywords
commonly found in every group of 9 cells (the considered cell to be annotated
and its 8 neighboors) and to use these keywords for annotation.

Fig. 3. Example of a map generated on the Antsearch databases (319 documents)
with annotations

5 Conclusion

We have presented in this paper a new algorithm for visual clustering which
makes use of cellular automata. We have experimentally shown that this algo
rithm is able to cluster in a relevant way standard numeric and textual data
bases.

The main limitations of our method are the followings: 1) the annotation of
cells is simple, 2) zooming on the map makes the user loose the global context of
the map which is confusing when dealing with several thousands of documents,
3) some clustering errors remain. For keywords extraction, we have mentioned in
the previous section a method which consists in extracting common keywords
to groups of 9 cells. In order to avoid the loss of context, we propose to use
a semantic zooming which establishes several hierarchical levels in the map:
starting from the initial grid, one may easily group together the cells (by groups

On Building Maps of Web Pages with a Cellular Automaton 41

Fig. 4. Zoom on a part of the Antsearch map

of 3 X 3 cells) and thus make several levels in the visualization. The annotations
provided at an upper level could be derived from the previous lower level. This
semantic zoom would allow the user to easily go from one level to the other
and to keep a good perception of the global context of the map. Finally, as far
as visualization is concerned, we could represent each document using visual
attributes that are more informative than a colored cell: one could use for
instance thumbnail views of the documents, or other visual attributes indicating
the size, type, etc, of documents.

Prom the clustering point of view, we think that our algorithm can be further
improved with respect to clustering errors but also to its complexity. In the first
case, we wish to use a local threshold for each data, rather than a global one.
This will avoid that some data get too easily placed on the grid at the end of
runs. For improving the algorithm complexity, one may consider that after a
given number of time steps, some cells do not evolve anymore and that they
should not be considered anymore. The number of cells to processed would thus
decrease with time. Finally, we also want to prepare a comparison between our
method and similar visual clustering algorithm like the SOM [2].

References

1. Zamir O, Etzioni O (1999). Grouper : a dynamic clustering interface to Web
search results Computer Networks (Amsterdam, Netherlands : 1999), 31(11-16)
:1361-1374.

2. Kohonen T (1998). Self-organization of very large document collections: State
of the art In: Niklasson, Lars; Boden, Mikael; Ziemke, Tom (Eds): Proceedings
of ICANN98, the 8th International Conference on Artificial Neural Networks
Conference: Skovde, Sweden, September 2-4 Springer (London) 1998 p 65-74.

42 H. Azzag, D. Ratsimba, D. Da Costa, C. Guinot, and G. Venturini

3. Wise, J. A: The Ecological Approach to Text Visualization In: Journal of the
American Society for Information Science (JASIS), 50 (1999) 13, p 1224-1233.

4. Cugini, J (2000). Presenting Search Results: Design, Visualization and Evaluation
In: Workshop: Information Doors - Where Information Search and Hypertext
Link. San Antonio, TX, May 30.

5. Roussinov D, ToUe K, Ramsey M, McQuaid M, and Chen H (1999). Visualiz
ing Internet Search Results with Adaptive Self-Organizing Maps. Proceedings of
ACM SIGIR, August 15- 19, Berkeley, CA.

6. Chen H, Schuffels C, Orwig R (1996). Internet categorization and search: a self-
organizing approach In: Journal of visual communication and image representa
tion, p 88-102.

7. Handl Julia, Bernd Meyer. Improved ant-based clustering and sorting in a docu
ment retrieval interface. In Proceedings of the Seventh International Conference
on Parallel Problem Solving from Nature, Vol. 2439 of Lecture Notes in Computer
Science (pp. 913-923). Berlin, Germany: Springer-Verlag.

8. Jain AK, Murty MN, Flynn PJ (1999). Data clustering; a review, ACM Com
puting Surveys, 31(3), pages 264-323.

9. Gardner M (1970). Mathematical Games: The fantastic combinations of John
Conway's new solitaire game 'life' Scientific American, pages 120-123, Octobre.

10. Ganguly N, Sikdar BK, Deutsch A, Canright G, Chaudhuri P (2003). A Survey on
Cellular Automata Technical Report Centre for High Performance Computing,
Dresden University of Technology, December.

11. Lumer E, Paieta B (1994). Diversity and adaption in populations of cluster
ing ants In Proceedings of the Third International Conference on Simulation of
Adaptive Behaviour: Prom Animals to Animats 3, pages 501-508 MIT Press,
Cambridge.

12. Blake CL, Merz, CJ (1998). UCI Repository of machine learning databases
http://wwwicsuciedu/mlearn/MLRepositoryhtml] Irvine, CA: University of Cal
ifornia, Department of Information and Computer Science.

13. Guinot C, Malvy DJM, Morizot F, Tenenhaus M, Latreille J, Lopez S, Tschachler
E, et Dubertret L (2003). Classification of healthy human facial skin Textbook
of Cosmetic Dermatology Third edition.

14. Han Eui-Hong, Boley Daniel, Gini Maria, Gross Robert, Hastings Kyle, Karypis
George, Kumar ipin, Mobasher Bamshad, Moore J (1998). Webace : a web agent
for document categorization and exploration In AGENTS '98 : Proceedings of
the second international conference on Autonomous agents, pages 408-415, New
York, NY, USA, ACM Press.

15. Salton G, Yang CS, Yu CT (1975).A theory of term importance in automatic text
analysis Journal of the American Society for Information Scienc, 26(l):33-44.

16. Azzag H, Picarougne F, Guinot C, Venturini G (2004). Un survol des algorithmes
biomimetiques pour la classification Classification et Fouille de Donnees, pages
13-24, RNTI-C-1, Cepadues.

17. Mokaddem F,Picarougne F, Azzag H, Guinot G, Venturini G (2004). Techniques
visuelles de recherche d'informations sur le Web, a paraitre dans Revue des Nou-
velles Technologies de I'lnformation, numero special Visualisation en Extraction
des Connaissances, Pascale Kuntz et Pranois Poulet redacteurs invites, Cepadues.

18. Von Neumann J (1966). Theory of Self Reproducing Automata, University of
Illinois Press, Urbana Champaign, Illinois.

Completing and Adapting Models
of Biological Processes

Tiziana Margaria^, Michael G. Hinchey^, Harald RafFelt^, James L. Rash^,
Christopher A. Rouff^, and Bernhard Steffen^

^ Chair of Service and Software Engineering, Universitat Potsdam (Germany),
margariaOcs.uni-potsdam.de

^ NASA Goddard Space Plight Center, Information Systems
Division, Greenbelt, MD, USA, mich.ael.g.h.inchey, james.l.rash@nasa.gov

^ Chair of Programming Systems, Universitat Dortmund (Germany),
har aid. raf f e l t , steffen9cs.uni-dortinuiid.de

* SAIC, Advanced Concepts Business Unit, McLean, VA 22102 rouffcSsaic.com

Abst rac t . We present a learning-based method for model completion
and adaptation, which is based on the combination of two approaches:
1) R2D2C, a technique for mechanically transforming system require
ments via provably equivalent models to running code, and 2) automata
learning-bafied model extrapolation. The intended impact of this new
combination is to make model completion and adaptation accessible to
experts of the field, like biologists or engineers. The principle is briefly il
lustrated by generating models of biological procedures concerning gene
activities in the production of proteins, although the main application
is going to concern autonomic systems for space exploration.

1 Motivation

A formal approach to Requirements-Based Programming, provisionally named
R2D2C ("Requirements to Design to Code"), was developed at NASA [1] as
a general-purpose method to mechanically transform system requirements into
a provably equivalent model. This is a central need for ultra-high dependabil
ity systems like those developed at NASA for space exploration. The R2D2C
approach provides mathematically tractable round-trip engineering for system
development, rigorously based on formal modelling and formal reasoning tech
niques. In this paper we complement this method with a learning-based method
for model completion and adaptation in order to make model completion and
adaptation accessible to experts of the field, like biologists or engineers.

Before discussing the technical background and the biological application,
we briefly sketch the standard areas of application.

Appl icat ion Areas The work described below is motivated by the need for
requirements-based programming for ultra-high dependability systems which are
remote, embedded, and increasingly autonomic.

Please use the follmving format when citing this chapter:

Margaria, T., Hinchey. M.G.. Raffelt, H . Rash, JX., Rouff. C.A., Steffen, B,, 2006, in IFIP International Federation for
Information Processing, Volume 216, Biologically Inspired Cooperative Computing, eds. Pan, Y, Rammig, R, Schmeck,
H., Solar, M., (Boston: Springer), pp. 43-54.

44 Tiziana Margaria et al.

Sensor Networks An example of a sensor network for solar system exploration
is the Autonomous Nano Technology Swarm mission (ANTS) [2], which is at
the concept development phase. This mission will send 1,000 pico-class (approx
imately 1 kg) spacecraft to explore the asteroid belt. The ANTS spacecraft will
act as a sensor network making observations of asteroids and analyzing their
composition. Embedded sensors in space applications are a challenge along sev
eral research dimensions: large signal propagation delays in communications
with Earth; unavailable or blocked communications paths between the space
craft and mission control on Earth for variable (perhaps long) intervals of time;
and operations under extremes of dynamic environmental conditions.

Due to the complexity of these systems as well as their distributed and paral
lel nature, they will have an extremely large state space and will be impossible to
test completely using traditional testing techniques. R2D2C helps by converting
the scenarios into a formal model that can be analyzed for concurrency-related
errors, consistency and completeness, as well as domain-specific errors.

Robotic Operations We have been experimenting with generating code to control
robots, but more interesting is the use of this approach to investigate the validity
and correctness of procedures for complex robotic assembly or repair tasks in
space, which rely heavily on the support of embedded controllers. Exploratory
work here concerns providing an additional means to validate procedures from
the Hubble Robotic Servicing Mission (HRSM) - for example, the procedures
for replacement of cameras on the Hubble Space Telescope (HST).

Communication Systems The learning based approaches have fared quite
promisingly for the test-based discovery of models of legacy communication
systems, thus outperforming prior approaches based on trace combination [3].
As shown in [4, 5], the test-based model generation by classical automata learn
ing is very expensive. It requires an impractically large number of queries to the
system, each of which must be implemented as a system-level test case. Key
towards the tractability of observation based model generation are powerful
optimizations exploiting different kinds of expert knowledge in order to drasti
cally reduce the number of required queries, and thus the testing effort. Recent
studies have brought to a thorough experimental analysis of the second-order
effects between such optimizations in order to maximize their combined impact
[5], and to the development of a mature toolset for experimentation [6], which
is used here. As shown in [7], our learning method is coherent with the usual
notions of conformance testing.

In the specific R2D2C context, we investigate the possible application of the
combined approach to the specification of communication mechanisms described
in the previous application domains. This can be completed by a test-based or
monitoring-based validation once those systems are operational.

In the following, we sketch the principles on which the R2D2C approach
works and the effects of the learning-enhanced method.

Completing and Adapting Models of Biological Processes 45

Fig. 1. The enhanced R2D2C Approach with Requirement Completion

2 How R2D2C Works

The R2D2C approach involves a number of phases, which are reflected in the
system architecture described in Figure 1 and described below.

D l Scenarios Capture: Engineers, end users, and others write scenarios de
scribing intended system operation. The input scenarios may be represented
in a constrained natural language using a syntax-directed editor, or may be
represented in other textual or graphical forms.

D2 Traces Generation: Traces and sequences of atomic events are derived from
the scenarios defined in Dl .

D3 Model Inference: A formal model, or formal specification, expressed in CSP
is inferred by an automatic theorem prover - in this case, ACL2 [8] - using
the traces derived in phase 2. A deep^ embedding of the laws of concur
rency [9] in the theorem prover gives it sufficient knowledge of concurrency
and of CSP to perform the inference. The embedding will be the topic of a
future paper.

D4 Analysis: Based on the formal model, various analyses can be performed,
using currently available commercial or public domain tools, and specialized
tools that are planned for development. Because of the nature of CSP, the
model may be analyzed at different levels of abstraction using a variety of
possible implementation environments. This will be the subject of a future
paper.

"Deep" in the sense that the embedding is semantic rather than merely syntactic.

46 Tiziana Margaria et al.

D5 Code Generation: The techniques of automatic code generation from a
suitable model are reasonably well understood. The present modeling ap
proach is suitable for the application of existing code generation techniques,
whether using a tool specifically developed for the purpose, or existing tools
such as FDR [10], or converting to other notations suitable for code gen
eration (e.g., converting CSP to B [11] and then using the code generating
capabilities of the B Toolkit).

According to this full cycle, developing a system that will have a high level
of reliability requires the developer to represent the system as a formal model
that can be proven to be correct. Through the use of currently available tools,
the model can then be automatically transformed into code with minimal or no
human intervention to reduce the chance of inadvertent insertion of errors by
developers. Automatically producing the formal model from customer require
ments would further reduce the chance of human error insertion.

In this paper we focus on a specific, new aspect of the R2D2C approach,
the completion of the requirements given as a set of traces as generated by D2.
This needs a short introduction into automata learning.

3 Automata Learning

Machine learning deals in general with the problem how to automatically gen
erate a system's description. Besides the synthesis of static soft- and hardware
properties, in particular invariants [12], [13], [14], the field of automata learning
is of particular interest for soft- and hardware engineering [15], [16], [17], [18],

[19].
Automata learning tries to construct a deterministic finite automaton (see

below) that matches the behavior of a given target automaton on the basis of
observations of the target automaton and perhaps some further information on
its internal structure. [3, 20, 21] explain our view on the use of learning. Here we
only summarize the basic aspects of our realization, which is based on Angluin's
learning algorithm L* from [22].

L*, also referred to as an active learning algorithm, learns a finite automaton
by actively posing membership queries and equivalence queries to that automa
ton in order to extract behavioral information, and refining successively an own
hypothesis automaton based on the answers. A membership query tests whether
a string (a potential run) is contained in the target automaton's language (its
set of runs), and an equivalence query compares the hypothesis automaton with
the target automaton for language equivalence, in order to determine whether
the learning procedure was (already) successfully completed and the experi
mentation can be terminated.

Completing and Adapting Models of Biological Processes 47

3.1 Learning-Based Mode l Complet ion and Adaptat ion

Specifications in terms of individual traces are by their nature very partial
and represent only the most prominent situations. This partiality is one of the
major problems in requirement engineering. It often causes errors in the system
design that are difficult to fix. Thus techniques for systematically completing
and later on adapting such partial requirement specifications in cooperation
with the application expert are of major practical importance.

We therefore propose a method for requirements completion and adaptation,
based on automatic (active) automata learning. In essence, the method

- initializes the learning algorithm with the set of traces constituting the re
quirement specification and with the model needing adaptation (this model
may well be empty), and

- constructs a consistent behavioral model by establishing predefined consis
tency and well-foundedness conditions. The details of how to do this have
been explained in [20] its practical handfing in [4, 5], and a library-based
toolset for experimentation in [6].

In this fashion, we arrive at a finite state behavioral model, which is an extrapo
lation of the given requirement specification: it comprises all 'positive' traces of
the specification, and rejects all forbidden traces. All the other potential traces
are consider as 'don't cares', in order to construct a corresponding state min
imal hypothesis automaton. In particular, although the learning procedure by
its nature will only investigate finitely many traces, the constructed hypothe
sis automaton will typically accept infinitely many traces, as the extrapolation
process introduces loops.

For this method to work, a number of membership queries need to be an
swered. Both, establishing closure of the model, as well as establishing the
consistency of the abstraction of reaching words into states (i.e., of the charac
terization from above introduced in the previous section) can only be effected
on the basis of additional information about the intended/unknown system.

3.2 Requirement Complet ion in R 2 D 2 C

Fig. 1 shows the R2D2C scenario including the new requirement completion
components. As indicated by the arrows representing the potential flow of
R2D2C processes, our new components introduce the following new options,
which complement the original R2D2C process here indicated by the arrow
bypassing the requirements completion module L2:

- Most powerful is the integrated mode of use, where the requirement comple
tion component L2 is added to the original process. Its role is here simply
to support the evaluation of the given set of requirement traces, and to hint
at underspecified portions which may be successively completed. This option
strengthens the original R2D2C process.

48 Tiziana Margaria et al.

- Alternatively, one may replace the model inference component D3 by our
requirements completion component L2, meaning that the subsequent com
ponent D4 and D5 directly work on the model produced by L2. Currently,
this means that we restrict ourselves to sequential models. However, we are
investigating how to overcome this restriction in the future.

The next section presents a non-standard application of our technology to the
description of biological processes.

4 Application: Generating and Verifying Complex
Biological Scripts and Procedures

Finding patterns in biological sequences has the goal of identifying parts that
have a biological meaning [23, 24, 25]. There are several approaches to this prob
lem. Bioperl [26] provides a collection of perl modules used for the development
of perl scripts for use in Bioinformatics apphcations.

The Bioperl [27, 28] Project is an international association of developers of
open source Perl tools for bioinformatics, genomics and life science research,
with strongly increasing relevance over the almost 10 years. Bioperl relies on
a large number of scripts to access, steer, and orchestrate a growing number
of bioinformatic tools and databases. These scripts are becoming increasingly
complex and intertwined, so that their correctness has become a legitimate
concern of the community.

The application of software validation techniques to Bioperl is attempting
to provide an ongoing, systematic testing of the Bioperl basis, with patches and
validated new code being added to the public codebase. The goal is to establish
user confidence that software components will work as described. R2D2C is a
comprehensive software validation method that has been already successfully
applied to problems in this domain.

We consider here again the application example already handled with
R2D2C in [29] and solve the model creation problem with the combined method
ology, using the requirement completion in replace mode.

4.1 From Scenarios to C S P

Let us consider again the same example from [30] (pp. 146-147). The problem
is described in the form of a scenario:

- Gene GeneOne produces protein ProteinOne in t l units of time; ProteinOne
dissipates in time u l and triggers condition cone.

- Gene GeneTwo produces protein ProteinTwo in t2 units of time; ProteinTwo
dissipates in time u2 and triggers condition ctwo.

- Once produced, ProteinTwo positions itself in GeneOne for u2 units of time
preventing ProteinOne from being produced.

Completing and Adapting Models of Biological Processes 49

GenelVro ProteinTsro ProteinOne

Fig . 2 . Learned models of the single actors

The scenario represents a process that is expressed and implemented in
Bioperl using a Perl script. However, it is also possible to express this scenario
using a formal model based on CSP [31]. GeneOne, ProteinOne, GeneTwo,
ProteinTwo can be considered as separate processes with timing constraints
implicitly included. (Timing constraints may be explicitly handled by using
Timed CSP, a variant of CSP which extends the semantics of CSP with time
[32].) The implicit pre-condition that GeneOne must be enabled is handled
by the Start process. The events and conditions describing protein production
are represented as messages gone, cone, gtwo, ctwo, and enabled. The resulting
R2D2C input scenario is (Dl):

Start sends enabled.

GeneOne receives enabled then sends gone.

ProteinOne receives gone tlien sends cone.

GeneTwo sends gtwo.

ProteinTwo receives gtwo then sends ctwo.

GeneOne receives ctwo then sends enabled.

and the corresponding system description in CSP (after Phase D2):

channel cone, ctwo, enabled, gone,

Start = enabled ! 0 -> Start ;

GeneOne = enabled ? x -> gone
ProteinOne = gone ? x -> cone
GeneTwo = gtwo ! 0 -> GeneTwo

ProteinTwo = gtwo ? x -> ctwo

GeneOne = ctwo ? x -> enabled
System =

GeneOne [| {1 1} |]

GeneTwo [| {| 1} |]

ProteinOne [| {| 1} |]

ProteinTwo [| {| 1} |]

Start ;

! 0
! 0

! 0

! 0

gtwo : T ;

-> GeneOne ;
-> ProteinOne

-> ProteinTwo

-> GeneOne ;

4.2 Learning and Adapt ing the Mode l s

Instead of analyzing the CSP model, as in [29], we have here used our learn
ing technique to fully automatically produce automata models for each system
component (see Fig. 2), as well as for the model of the whole system (Fig. 3).

50 Tiziana Margaria et al.

These graphs show in a very intuitive way the global behaviour of the system.
It is thus very direct also for someone unfamiliar with CSP and its tools to
validate the behaviour by inspection.

A frequent mistake in implementing these requirements is in fact the omis
sion of constraints, either due to their implicit presence in the requirements, or
due to errors in code development. For example, omitting Start sends enabled
(which makes explicit an implicit precedence) nothing prevents GeneOne from
constantly generating ProteinOne and ignoring ProteinTwo inhibition. The cor
responding erroneous system of [29] has also been learnt with our method, re
sulting in the global behaviour of Fig. 4(4).

This inspection could then be used to revise the requirements before devel
oping the Bioperl code, even before carrying out a formal analysis at D4.

Complete System

Fig. 3. Learned model of the biological system

Completing and Adapting Models of Biological Processes 51

(1) (2) (3)

Fig. 4. Stepwise learned model of the incorrect biological system

4.3 Successive Refinement

The erroneous system could be learned in only four iterations. Fig. 4 illustrates
the concrete learning process starting from the initial hypothesis along the
application of the algorithm.

To learn this model from scratch we initialize the learning algorithm with
no information about the system except for the alphabet of symbols. No initial
trace is provided, no hints on possible symmetries or independent actions.

1. After processing the queries of length 0 and 1 with these outcomes
0 ace
gone ace
gtwo ace
ctwo nonacc
cone nonaec

the learning algorithm generates the hypothesis model depicted in Figure
4(1): there is at least one state, which accepts gone and gtwo and rejects cone
and ctwo. In the picture we show only the accepting traces: the automata
are incomplete in the sense that all the absent symbols lead to a single
nonaccepting state.

2. By model checking an expert-given corresponding property we find out that
gone.gone is not an accepting sequence, thus the model (1) is not yet accu
rate and must be refined. We refine it starting from this counterexample,
and reach a new hypothesis shown in Fig. 4(2). Here, the counterexample
sequence leads to the discovery of a second state, state 1, and we have
distinguished further behaviours.

3. Due to expert knowledge, we find out that gtwo.gtwo is another trace that
must be rejected. This leads to the further refinement of state 1 and by
completion we reach a new hypothesis as in Fig. 4(3).

52 Tiziana Margaria et al.

4. After also rejecting gone.gtwo.ctwo.gone in a similar fashion, we arrive at
the automaton shown in Fig. 4(4), which satisfies all our expectations.

In order for this method to scale, and to Hmit the required expert-interaction, we
provide a number of optimizations that exploit other sources of expert knowl
edge, like prefix closure of the language, symmetry between certain components
(genes always behave like genes), and the independence of certain observations.

5 Conclusions and Perspectives

We have presented a learning-based method for model completion and adapta
tion, which is based on the combination of two approaches: 1) R2D2C, a tech
nique for mechanically transforming system requirements via provably equiva
lent models to running code, and 2) automata learning-based model extrapola
tion. The intended impact of this new combination is to make model completion
and adaptation accessible to experts of the field, like biologists or engineers.

Currently, we are investigating the power of our method. Until now, we
used it for an initial model completion, as a support for the creation of the first
model. We are currently carrying out case studies that concern model evolution
and change, in this case continuously updating the model of biological processes
according to new information.

We are also building and adapting models of servicing procedures for space
crafts, and adaptive control procedures for remote autonomic systems. These
are the application areas that in our opinion are going to profit enormously of
the combined completion-adaptation technique.

References

1. Michael G. Hinchey, James L. Rash, Christopher A. Rouff: A Formal Approach
to Requirements-Based Programming, Proc. ECBS 2005, 12th IEEE Int. Conf. on
the Engineering of Computer-Based Systems, Greenbelt (MD), 2005, IEEE, pp.
339-345.

2. S. A. Curtis, J. Mica, J. Nuth, G. Marr, M. L. Rilee, and M. K. Bhat. ANTS
(Autonomous Nano-Technology Swarm): An artificial intelligence approach to
Asteroid Belt resource exploration. In Proc. Int'l Astronautical Federation, 51st
Congress, October 2000.

3. A. Hagerer, H. Hungar, O. Niese, and B. Steffen. Model Generation by Moderated
Regular Extrapolation. Proc. of the 5th Int. Conf. on Fundamental Approaches
to Software Engineering (FASE 2002), LNCS 2306, pp. 80-95.

4. H. Hungar, T. Margaria, B. Steffen: Test-Based Model Generation for Legacy
Systems, IEEE International Test Conference (ITC), Charlotte, NC, September
30 - October 2, 2003.

5. T. Margaria, H. Raffelt, B. Steffen: Analyzing Second-Order Effects Between Op
timizations for System-Level Test-Based Model Generation, Proc. IEEE Interna
tional Test Conference (ITC), Austin, TX (USA), November 8 - 10, 2005, IEEE
Computer Society Press.

Completing and Adapting Models of Biological Processes 53

6. H. Raffelt, B. Steffen, T. Berg: LearnLib: A Library for Automata Learning and
Experimentation, Proc. FMICS 2005, 10th ACM Workshop on Formal Methods
for Industrial Critical Systems, Lisbon, Sept. 2005.

7. T. Berg, O. Grinchtein, B. Jonsson, M. Leucker, H. Raffelt, B. Steffen: On the
Correspondence Between Conformance Testing and Regular Inference, Proc. FASE
2005, 8th Int. Conf. on Fundamental Approaches to Software Engineering, Edin
burgh, UK, April 2005, LNCS N.3442, pp. 175-189, Springer Verlag, 2005.

8. M. Kaufmann and Panagiotis Manolios and J Strother Moore. Computer-Aided
Reasoning: An Approach. Advances in Formal Methods Series. Kluwer Academic
Publishers, Boston, 2000.

9. M. G. Hinchey and S. A. Jarvis. Concurrent Systems: Formal Development in
CSP. International Series in Software Engineering. McGraw-Hill International,
London, UK, 1995.

10. Failures-Divergences Refinement: User Manual and Tutorial. Formal Systems
(Europe), Ltd., 1999.

11. M. J. Butler. csp2B : A Practical Approach To Combining CSP and B. Declar
ative Systems and Software Engineering Group, Department of Electronics and
Computer Science, University of Southampton, Feb. 1999.

12. M. D. Ernst, A. Czeisler, W. G. Griswold, D. Notkin. Quickly detecting rele
vant program invariants In proceedings of the 22nd International Conference on
Software Engineering (ICSE 2000), 449-458, June 2000.

13. J. W. Nimmer, M. D. Ernst. Automatic generation of program specifications
In Proceedings of the 2002 International Symposium on Software Testing and
Analysis (ISSTA 2002), 232-242, July 2002

14. Y. Brun, M. D. Ernst. Finding latent code errors via machine learning over
program executions Proc. 26th Int. Conf. on Software Engineering (ICSE'04),
pp. 480-490, May 2004

15. J. E. Cook, A. L. Wolf Discovering Models of Software Processes from Event-
Based Data ACM Trans, on Software Engineering and Methodology (TOSEM)
pp. 215-249, 1998

16. L. Mariani, Mauro Pezze. A technique for verifying component-based software
Proceeding of the Int. Workshop on Test and Analysis of Component Based Sys
tems, TACOS 2004, Barcelona, March 2004

17. T. Xie, D. Notkin Mutually Enhancing Test Generation and Specification Infer
ence. In Proceedings of 3rd International Workshop on Formal Approaches to
Testing of Software (FATES 2003), LNCS Vol. 2931, Springer, pp. 60-69, Oct.
2003.

18. D. Peled, M. Y. Vardi, M. Yannakakis Black Box Checking Formal Methods for
Protocol Engineering and Distributed Systems, (FORTE/PSTV), pp. 225-240,
1999, Kluwer.

19. J. E. Cook, Z. Du, C. Liu, A. L. Wolf. Discovering Models of Behavior for Concur
rent Systems Tech. rep. New Mexico State University, Dept. of Computer Science,
Aug. 2002

20. B. Steffen and H. Hungar, Behavior-based model construction. In S. Mukhopad-
hyay and L. Zuck, editors, Proc. 4ih Int. Conf. on Verification, Model Checking
and Abstract Interpretation, LNCS 2575, Springer 2003.

21. T. Margaria, O. Niese, H. Raffelt, and B. Steffen Efficient Test-based Model Gen-
erationfor Legacy Reactive Systems. To appear in Proceedings of International
High Level Design Validation and Test Workshop, 2004 Sonoma, California.

54 Tiziana Margaria et al.

22. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 2(75):87-106, 1987.

23. D. E. Krane and M. L. Raymer. Fundamental Concepts of Bioinformatics. Ben
jamin Cummings, San Prancisco, 2003.

24. S. A. Krawetz and D. D. Womble. Introduction to Bioinformatics: Theoretical
and Practical Approach. Humana Press, Totowa, New Jersey, 2003.

25. A. M. Lesk. Introduction to Bioinformatics. Oxford University Press, Oxford, UK,
2002.

26. J. Stajich and E. Birney. The Bioperl project: motivation and usage. SIGBIO
Newsl., 20(2):1314, 2000.

27. P. van Heusdan. Applying software validation techniques to Bioperl. In 2004 Bioin
formatics Open Source Conference, Glasgow, UK, 2930 July 2004. Abstract.

28. Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, Puellen
G, Gilbert JG, Korf I, Lapp H, Lehvaslaiho H, Matsalla C, Mungall CJ, Osborne
BI, Pocock MR, Schattner P, Senger M, Stein LD, Stupka E, Wilkinson MD, and
Birney E: The Bioperl toolkit: Perl modules for the life sciences. Genome Res 2002
Oct; 12(10) 1611-8. PubMed HubMed [bioperl2002]

29. J. Rash, M. Hinchey, D. Gracanin, C. Rouff: An Approach to Generating and
Verifying Complex Scripts and Procedures, 4th lEEE-CS Computational Systems
Bioinformatics, CSB Workshops, Stanford, Aug. 2005, pp. 305-313.

30. J. Cohen. Bioinformaticsan introduction for computer scientists. ACM Comput.
Surv., 36(2);122158, 2004.

31. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International
Series in Computer Science. Prentice Hall International, Englewood Cliffs, NJ,
1985.

32. S. Schneider, J. Davies, D. M. Jackson, G. M. Reed, J. Reed, and A. W. Roscoe.
Timed CSP: Theory and practice. In Proc. REX, Real-Time: Theory in Practice
Workshop, volume 600 of LNCS, pages 640-675. Springer-Verlag, 3-7 June 1991.

The Utility of Pollination for
Autonomic Computing

Holger Kasinger and Bernhard Bauer

University of Augsburg
Universitaetsstrasse 14

86135 Augsburg, Germany
kasingerIbauer@informatik.uni-augsburg.de

Abs t rac t . FVom the biology's point of view, pollination is an important
step in the reproduction of seed plants. Prom our point of view, pollina
tion is a promising and novel, biological paradigm for future dependable
and self-managing computing systems. This estimation is based on the
characteristics the pollination process between plants and insects im
plies inherently.
To utilize pollination as a paradigm for self-managing and thus auto
nomic computing systems, this paper identifies the useful properties
that emerge by the collaborative behavior of insects and plants during
the pollination process. Based on this process the paper presents an ar
tificial pollination system that implements these properties by adapting
the natural architecture and behavior. Furthermore, the paper illus
trates the practical value of this system by an application in aviation.
Finally open issues and an outlook on future work are presented.

1 Introduction

Imagine sitting in an aircraft and looking out of the window whilst waiting for
departure, you may see a buzz of activity; Dozens of baggage trains carrying
innumerable pieces of luggage, catering trucks transporting fresh meals and
drinks, service cars taking cabin crews to their aircrafts, or fueling vehicles
pumping kerosene into the aircrafts' wings. In spite of this hectic overall picture,
all activities seem to be intended and coordinated, what is the achievement of
the ground control, a central facility at an airport. This institution is responsible
for the coordination and management of all activities on the apron of an airport,
in particular for every aircraft handling. In addition the ground control has to
cope with any conceivable disturbances, e. g. absent ground vehicles, accidents
on the apron, delayed or different typed aircrafts, unavailable passenger bridges,
occupied ramps (the places for embarking and disembarking) due to delay, or
other activities not finished properly.

However, in face of their valuable work, these centralized ground controls
will become a bottleneck and single point of failure to airports in future, as the
total passenger traffic world wide will continue its trend of the last decades and
rise constantly. For example, Atlanta International Airport handled almost 76

Please use the following format when citing this chapter:

Kasinger, H., Bauer, B., 2006, in IFIP International Federation for Information Processing, Volume 216, Biologically
Inspired Cooperative Computing, eds. Pan, Y, Rammig, F., Schmeck, H., Solar, M., (Boston: Springer), pp. 55-64.

56 Holger Kasinger and Bernhard Bauer

millions of passengers in 2001, while in 2004 it have been almost 84 millions [1].
This results in an increased flight density at airports which causes the latter
to expand in the same manner. This in turn boosts the management efforts of
centralized ground controls more and more. Thus, ground control is clearly in
need of new management approaches to cope with these future challenges.

Limiting management and administration efforts for computing systems also
is the vision of Autonomic Computing (AC) [2]. Future autonomous comput
ing systems are supposed to feature system-level self-managing capabilities,
i. e. they ought to be self-configuring, self-optimizing, self-healing, and self-
protecting (also referred to as self-* properties). But in spite of the many
prospective approaches in various fields that delivered a couple of contributions
to future autonomic computing systems in recent years (for an overview see
[3]), this vision is not procurable easily. A remaining research challenge is that
elements of an autonomic system have to share a set of common behaviors, in
terfaces and interaction patterns that are demonstrably capable of engendering
system-level self-management [4].

To meet this challenge, it might be a good idea to throw a glance at nature.
The adaptation of self-organizing biological systems [5] is a common method for
the solution of artificial problems. For example, Swarm Intelligence [6] uses the
collective behavior of biological systems (e. g. ant colony foraging, bird flocking,
or termite mound construction) as paradigm for solving optimization problems.
Also Autonomic Computing already makes use of biological paradigms in vari
ous fields (e. g. [7, 8, 9]), even the AC initiative [10] itself is based on a biological
paradigm: the autonomous nervous system. Thus, looking for biological para
digms engendering autonomy at system-level and adapting their architecture
and behavior will be a promising way for building future autonomous systems.

In this paper we present such a novel, biological paradigm: pollination of
plants. Prom the biology's point of view [11], pollination is an important step in
the reproduction of seed plants. Thereby pollen grains - the male gametes - are
transfered from the anther of a flower to the carpel of a flower, i. e. the structure
that contains the ovule - the female gamete. Pollination is not to be confused
with fertilization, which it may precede. Prom our point of view, pollination can
evolve into an important biological paradigm for future autonomic computing
systems. This estimation is based on the self-* properties the pollination process
between plants and insects implies inherently. Thereby system-level autonomy
is not a result of one homogeneous but of two heterogeneous organizations,
plants and insects.

The rest of the paper is organized at follows: Section 2 provides some back
ground information on Autonomic Computing as well as on the biological polli
nation process. Section 3 identifies the emerging self-* properties of this process,
that make pollination useful for AC, and presents an artificial pollination system
that implements these properties by adaptation. In section 4 we illustrate the
practical value of the artificial pollination system by applying it as a new man
agement approach to the initial scenario presented above. Section 5 concludes
and presents open issues as well as an outlook on future work.

The Utility of Pollination for Autonomic Computing 57

2 Background

This section provides some needful background information on Autonomic Com
puting as well as on the natural pollination process between plants and insects.

2.1 A u t o n o m i c Comput ing

The Autonomic Computing initiative was founded by IBM in 2001. For its vision
of self-managing systems, IBM proposes a reference architecture for autonomic
computing systems [12], that consists of four levels: On the lowest level managed
resources (MR) are located, e. g. HW/SW-components like servers, databases
or business applications, together forming the entire IT infrastructure. So-called
touchpoints on the next level provide a manageability interface for each MR -
similar to an API - by mapping standard sensor and effector interfaces on the
sensor and effector mechanisms of specific MRs, e. g. commands, configuration
files, events or log files. The next higher level is composed of so-called touchpoint
autonomic managers (TAM) directly collaborating with the MRs and managing
them through their touchpoints.

Generally an autonomic manager (AM) implements an intelligent control
loop (closed feedback loop) called MAPE loop. The latter is composed of the
components monitor (collects, aggregates, filters and reports MR's details),
analyze (correlates and models complex situations), plan (constructs actions
needed to achieve goals) and execute (controls execution of a plan). Addition
ally, a knowledge component provides the data used by the four components,
including policies, historical logs and metrics. Together with one or more MRs,
an AM represents an autonomic element (AE).

A TAM also provides a sensor and an effector to orchestrating autonomic
managers (0AM) residing on top level. The latter are responsible for system-
wide autonomic behavior, as TAMs are only responsible for an autonomic be
havior of their controlled MRs.

2.2 T h e natural poll ination process

In nature pollination involves different components and sub-process.

Poll inat ion components Normally two components are involved in the pol
lination process, plants - more precisely the flowers of a plant as pollen source
and pollen sink - and pollination vectors - agents carrying pollen from the
source's anther to the sink's stigma (the receptive part of the carpel). Ad
mittedly, there are a few plants that can self-pollinate, but as this results in
inbreeding, most species rely on cross-pollination by some kind of pollination
vector to accomplish pollination. The pollination vector not essentially has to
be an insect or an animal, also wind and water come into operation. However,
many plant species do not bank on random pollination by wind or water, thus
insects and animals are the preferred pollinators of most species. In some cases,
the evolutionary link between a species and its pollinator has become so tight
that each is dependent on the other's efforts for its continued survival.

58 Holger Kasinger and Bernhard Bauer

Attract ion process During bloom the flowers of a plant need to attract pol
linators that pick up and deliver pollen (grains) respectively to accomplish pol
lination. For the attraction, flowers provide certain attraction cues that might
be visual or olfactory.

Showy petals or sepals with obvious shape, size, and color for the vectors'
vision are important visual cues. Of course not every pollinator is attracted by
the same colors, e. g. butterflies and birds are only attracted to red and yellow
colors. Additionally, there might be color patterns (e. g. bull's eyes or nectar
guides) that form a high-contrast exhibit to make the flowers stand out against
a background of green foliage. Such cues assist a pollinator to "see" the flowers
and in beginning to concentrate its visits only on those with the same certain
colors. However, some vectors have limited visual capabilities but an extensive
ability to find a flower by its fragrance. Thus, flowers produce volatile chemicals
that diffuse and are carried by air movements through the environment. A vector
that is able to recognize such a fragrance and fly up the concentration gradient,
can easily find the next fiower of a particular species. Flowers over time have
evolved a wide array of fragrances which results in efficient pollinator attraction
too. Again, different pollinators have different sensitivities to certain fragrances,
e. g. flowers specialized in attracting flies are famous for their fetid aroma.

Not imtil a successful fertilization succeeds the pollination, a flower ceases
to attract pollinators, as there is no need of further pollen grains.

Rewarding process Nevertheless, attracting poUinators is not fruitful on its
own, as pollinators usually are intelligent enough to avoid the energy waste
of behaviors that do not result in some kind of reward. Thus, a flower needs
to reward an attracted pollination vector so that it will perceive the reward
as a result of its visit. The vector's intelligence will then allow it to decide to
visit similar flowers nearby to obtain additional rewards. This is the reason why
vectors visit only one flower species on a trip.

While collecting its reward the vector unconsciously picks up and delivers
pollen grains by its underside. Vectors collect rewards as long as they have
had enough or they can not find anymore. This remarkable vector behavior
ensures an effective pollination. The vector's reward can be either nectar, pollen,
behavior, or some combination of these. Nectar is a carbohydrate rich droplet
that is used as an energy source for vectors. Hummingbirds, for example, must
consume vast quantities of nectar to continue their high-energy method of flight.
Bees collect nectar and evaporate it down to make honey for winter supplies.
The pollen itself contains protein, starch, oil, and other nutrients. It is far
richer than nectar in vitamins and minerals too. For bees, the collection and
consumption of pollen is critical as it is their basic protein supply. Fortunately,
pollinators on this account are not very careful in cleaning off sticky pollen that
cling to their bodies. Behavior can also be a reward that gets a repeat visit by
a vector. The vector must like the experience while visiting and come back for
more.

The Utility of Pollination for Autonomic Computing 59

3 An artificial pollination system

3.1 Pol l inat ion process properties

Over the past millions of years plants and insects have evolved a natural, au
tonomous system that exhibits various useful properties for AC:

Self-configuration: The evolutionary link between a species and its polli
nator is responsible for a seamless incorporation of new plants and pollination
vectors. A plant is incorporated as soon as a linked vector scents its fragrance,
while as soon as a vector scents a linked fragrance, it is incorporated itself.

Self-optimization: Vectors carrying pollen faster will collect more reward.
In addition, flowers providing higher reward will be visited more often. Both
speeds up the pollination process by different strategies within the components.

Self-healing: The loss of pollination vectors yields (to a certain extent) to
no significant disturbance of the pollination process, as other pollinators will
pick up and deliver pollen grains instead of. The reason is, that flowers produce
pollen as long as they are fertilized (or their bloom is over before respectively).

Self-protection: Reward is only provided to vectors that pick up or deliver
pollen during its visit. Flowers are that structured, that no intruders can receive
any reward without picking up or delivering pollen as a trade-off.

Self-adaptation: A plant (species) not adapting its attracting and reward
ing to the available pollination vectors over the long run will finally die out. Vice
versa, a vector (species) not adapting its behavior to the specific characteristics
of the available plants will become extinct either.

Self-organization: Pollination exhibits all required aspects [13] for a self-
organizing system: It exposes an increase in order - evoked by the attracting
and rewarding - , is autonomous - it has no external control - , is adaptable and
robust w.r.t. changes ~ it has no single point of failure - and is dynamical.

3.2 S y s t e m architecture

The adaptation of the natural architecture and behavior requires some premises
necessary for an efficient exploitation of the above pollination process properties:

(1) A single artificial pollination system represents a finite, natural polli
nation environment, e. g. a grassland or a piece of forest. The representation
of the entire nature as a huge, single, and closed pollination system would be
absurd. (2) Sun, wind and rain come not into operation within the artificial
pollination system, neither as pollination vectors nor as influencing quantities.
Thus, pollination is based on "living" vectors only. (3) The attraction of arti
ficial vectors is based on olfactory cues (fragrances) only, as volatile chemicals
are representable, see pheromones [14] for example. Visual cues would be non
sensical in the scope of autonomic computing systems. (4) The rewarding of
artificial vectors is based on nectar rewards only. It would be counterproductive
if vectors are allowed to consume picked up pollen. Defining an exiting behavior
for software components is absurd either.

60 Holger Kasinger and Bernhard Bauer

fifenus iJperie? Plant

RF.vnidWnit
u LuntiJntiatiijn

V«' toi
o i apa it\

, . Frajance
o intemib

RS!watdS«;t

- PcfenGian

Flower

Pals£et

Of da • Deslied ft'ovlffed

Fig . 1. Meta model of the artificial pollination system

Figure 1 depicts the meta model of the system architecture of the artificial
pollination system (APS), that takes the above premises into consideration.
Plants within the APS are defined by its genera and species . The scientific
classification of natural plants into genera (e. g. roses or tulips) and species (e. g.
Redleaf Rose, Gooseberry Rose, . . .) goes back to Linnaeus [15] and is adapted
here as well. According to Linnaeus, a genus consists of one or more species,
whereas a species consists of a plenty of entities (plants). A species may be sub
divided into subspecies, races, . . . , but this refinement is not mandatory here.
Linnaeus regarded genera and species as disjunctive sets, what is reasonable for
biology (a rose is a rose and not a rose and a tulip at the same time). But for
the APS this disjunction would hold some disadvantages. Thus, without loss
of generality, we admit a plant to be a member of one or more species, as well
as a species to be a member of one or more genera at the same time - which
represents evolution. As a consequence, a natural pollination environment can
be considered as a special case of the APS. For zoology Linnaeus specified a
scientific classification too. For the APS we only adapt the hierarchical term
of order. In this case the natural disjunction remains, i. e. a vector belongs to
exactly one order at the same time. Due to the fact that the system represents
a finite pollination environment, the system boundaries are clearly defined and
the number of plants and vectors is determinable at any time.

In contrast to the entire plant a flower is only allowed to be of a single
genus and single species at the same time. From the fertilization's point of view
the allocation of a flower to a species is not essential in either case. Sometimes
it is sufficient, if the pollen grain a flower is pollinated with emanates from a
flower of the same genus, independent of its species, and vice versa.

A pol len grain within a pol len set is of the same species and genus as
the flower it is produced by. Note, a pollen grain includes no more information,
in particular no hint on the flower serving as addresser or addressee for it.

The Utility of Pollination for Autonomic Computing 61

A flower possesses a provided and a desired pollen set, each including a
dynamically changing quantity of pollen grains. This diverges from nature in
one aspect: A natural flower does not know about the quantity of provided
and desired pollen grains. The reason for this divergence is the representation
of fertilization, as the moment of fertilization is responsible for the cessation
of attracting and rewarding vectors. The APS represents this moment by the
time a flower provides and desires no more pollen grains. On this account the
divergence has no effect on the overall process.

A reward unit within the reward set of a flower corresponds to a nectar
drop. As experiments (see [16, 17]) have pointed out, that e. g. honey bees
do not only determine a good food source by the quantity but also by the
quality of the reward, more precisely by the sugar concentration of the nectar,
the concentrat ion is attributed to a reward unit. To cover the quantitative
aspect, we additionally define the constraint that "per picked up or delivered
pollen grain a vector will receive one reward unit". Thus, the size of the provided
reward set of a flower is always equal to the current quantity of provided and
desired pollen grains. Furthermore, a change of concentration affects all reward
units within a reward set in the same way.

A fragrance propagates the current reward conditions of a flower and there
fore consists of all the information vectors need to decide to visit the flower:
The genus, the species, the reward concentration, and the quantity of reward
units (for pick up as well as delivery of pollen grains) provided by the flower.
Additionally, an intensity is attributed to a fragrance, what ensures two nat
ural aspects: Firstly, the temporal volatility of a fragrance, and secondly, the
route guide for a vector. Note, like in nature a fragrance consciously includes no
information on the identity of the emitting flower. A vector follows a fragrance
because it wants to receive an adequate reward, no matter from which flower of
a certain species or genus. If the vector scents on its way to this flower another
fragrance with better conditions, the vector may follow this new fragrance.

A vector is a pollinator for only one or a few genera and can only pick up or
deliver pollen grains from flowers of these genera. This represents the natural
fact that not all vectors serve as a pollinator for every genus, but only for
elected ones - flies will not pollinate roses for example. Furthermore, a vector's
capacity limits its ability to collect innumerable quantities of reward units
(and pollen grains) - just like in nature. There, a bee, for example, that is full
of nectar, has to fly back to its hive and deliver the collected nectar as honey
before being able to collect further nectar. As hives are not directly part of
the APS, we define the constraint that "per delivered pollen grain a vector may
consume two reward units" to free its capacity again. This coerces a vector with
no available capacity, first to deliver a few or all of its picked up pollen grains
and to consume the respective amount of reward units, before picking up any
further pollen grains. As the genus and species of the first collected reward unit
of a vector predefine the only species to be visited on the trip (like in nature),
the end of a trip is represented by the moment a vector has collected no more
reward units. This is the time when all picked up pollen grains are delivered.

62 Holger Kasinger and Bernhard Bauer

4 An autonomous aircraft handling system

To illustrate the utility of pollination for Autonomic Computing, we use the
artificial pollination system for an autonomous aircraft handling system, that
may help to reduce the ground control management efforts at airports in future.
Therefore, consider the model depicted in figure 2, which represents an instance
of the meta model in figure 1, and visualizes the mapping between APS elements
and real aircraft handling entities at an airport.

aoi.nriVsh|tte: V̂ i-tni (jitH-ind'javro; t-aius FtghtWi-rnhf I ; SPMCHS

tfght leT»i> • ftdPi Am raft; Plant Baytajt'Cwtui : Plait TankFfflin: Plant

Aifftetjht: Pfovki«jd teCrh ; FInwH Com'i'iaBsk ; flu'Aer Dispa-imiHteid ; Ho»oi

P|giifOflu.iq3.iH ; PiJpnfir.Tln

OepFi'aaht; tesirwl

Fig. 2. Instance model of an autonomous aircraft handling system

~ 3iS!KMssi-LS£wii£M.

Hiiiey ! PewafriUnit RaiioSignal. Ba ja ice

0opRig|; D>>a»?d - LitttfJfr.wirKeni^: Pd to i i an • -" ftiebet: Pipwded

To simplify matters, this instance model shows a flattened aircraft handling,
where only two ground services, baggage handling and fueling, are required.
Thereby each ground service is mapped on a genus. Flight numbers of arriving
aircrafts, e. g. LH 457, AC 874, . . . , each are mapped on a species, whereas the
aircrafts themselves become a plant. Aircraft facilities, here the baggage center
and the tank farm, are mapped on plants too. Flowers {hatches, conveyor belts,
and dispensing heads) emit radio signals as fragrances, that attract ground
vehicles (mapped on vectors) of a certain vehicle type (mapped on orders), e. g.
here baggage trains or fueling vehicles. Just like in nature, such an attracted
vector carries the pieces of luggage or liters of kerosene (mapped on pollen
grains) from the provided pollen sets of flowers (here the freight by arrival
ArrFreight, the baggage set and the fuel set) to the desired pollen sets (here
the freight by departure DepFreight and the fuel by departure DepFuel) and
hence are rewarded by the flowers with money (mapped on reward units) of the
provided reward sets (mapped on the supply of money) of every flower.

Beneath this theoretical mapping, the AC reference architecture has to be
applied, to make the autonomous aircraft handling work. Thus, every real entity
(airport facilities, aircrafts, vehicles, . . .) is represented as a managed resource
and equipped with a touchpoint as a management interface. On top of these
touchpoints autonomic managers, e. g. software agents, are placed, that assume

The Utility of Pollination for Autonomic Computing 63

the corresponding role and behavior that are assigned to each resource by the
mapping above. By these mappings and applications the aircraft handling pro
ceeds in the same autonomous manner as the pollination process in nature and
thus can make use of all the self-* properties identified in subsection 3.1, what
may reduce the management efforts by ground controls.

5 Conclusion, open issues and outlook

This paper pointed out, that pollination is not only an important step in the re
production of seed plants in nature, but also serves as a biological paradigm for
future autonomic computing systems due to its properties implied inherently.
This was accomplished by an adaptation of the natural pollination process
between plants and insects as well as the corresponding sub-processes. The re
sultant artificial pollination system and its meta model respectively now enable
the exploitation of these natural properties for the self-management of future
systems, in particular the self-configuration, self-optimization, self-healing and
self-protection of these systems. The future practical value of this paradigm was
demonstrated by an example application for an autonomous aircraft handling
system.

Nevertheless, the presented meta model provides no blueprint for all kinds
of future autonomic computing systems. A domain-specific application requires
a possible mapping of plants, flowers, fragrances, pollen grains and vectors on
appropriate entities that are desired to run or perform a task autonomously.
Beneath autonomous aircraft handling, one can think of autonomous manu
facturing control, where robots (vectors) carry workpieces (pollen grains) to
product machines (plants), or high rack warehouses with a similar behavior,
for example. Of course these application scenarios already today run automati
cally, but not inevitably autonomously. By virtue of these versatile applications,
a mid-term objective will be to expand the pollination system to an autonomic
middleware for suchlike application domains.

However, this objective brings several open issues about. One issue is the
management of the global system behavior by high-level policies. This requires
knowledge about the correlations between the global system behavior and the
local behavior of single components, in particular how to control emergence.
Further issues are novel and enabling technologies supporting the intended APS
behavior, like Semantic Web and Semantic Web Services, Grid, P2P, or multi-
hop ad-hoc sensor networks.

Thus, the next step will be the implementation of an APS simulation. This
may shed light on alterable system parameters, as the optimal relationship
between the immber of plants, flowers, and vectors, a flower's fragrance emitting
frequency and the intensity (decrease) of a fragrance as well as the reward
unit concentration adjustment. This enables an evaluation of the scalability,
efficiency, robustness and low-latency of the APS and may help to meet some
open issues.

64 Holger Kasinger and Bernhard Bauer

References

1. Airports Council International: Passenger traffic 2000 - 2004 final. (Available at
http;//airports.org)

2. Kephart, J.O., Chess, D.M.: The vision of Autonomic Computing. Computer 36
(2003) 41-52

3. Sterritt, R.: Autonomic Computing. Innovations in Systems and Software Engi
neering 1 (2005) 79-88

4. Kephart, J.O.; Research Challenges of Autonomic Computing. In: 27th Interna
tional Conference on Software Engineering. (2005) 15-22

5. Camazine, S., Deneubourg, J.L., Pranks, N.R., Sneyd, J., Theraulaz, C ,
Bonabeau, E.: Self-Organization in biological systems. Princeton Studies in Com
plexity. Princeton University Press (2001)

6. Bonabeau, E., Dorigo, M., Theraulaz, C : Swarm Intelligence: Prom natural to
artificial sytems. Santa Fe Institute Studies on the Sciences of Complexity. Oxford
University Press (1999)

7. Anthony, R.J.: Emergence: A paradigm for robust and scalable distributed ap
plications. In: First International Conference on Autonomic Computing. (2004)
132-139

8. Birman, K.P., Guha, R.M.S.: Scalable, self-organizing technology for sensor net
works. In: Advances in Pervasive Computing and Networking. Kluwer Academic
Press (2004)

9. Saffre, F., Blok, H.R.: "SelfService", a theoretical protocol for autonomic dis
tribution of services in P2P communities. In: First International Conference on
Autonomic Computing. (2004) 326 - 327

10. IBM: Autonomic computing: IBM's perspective on the state of information
technology. (Available at http://www.research.ibm.com/autonomic/manifesto/
autonomic-Computing.pdf)

11. Pollination: The Columbia Encyclopedia. 6th edn. Columbia University Press,
New York (2001-04)

12. IBM: An architectural blueprint for autonomic computing. (Available at
http://www-03.ibm.com/autonomic/pdfs/ACBP2.2004-10-04.pdf)

13. Wolf, T.D., Holvoet, T.: Emergence versus self-organisation: Diflferent concepts
but promising when combined. In: Engineering Self-Organising Systems. (2004)
1-15

14. Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics Part
B: Cybernetics 26 (1996) 29-41

15. Linnaeus, C : Systema naturae per regna tria naturae, secundum classes, ordines,
genera, species, cum characteribus, differentiis, synonymis, locis. 10th edn. L.
Salvii, Stockholm (1758)

16. Camazine, S., Sneyd, J.: A model of collective nectar source selection by honey
bees: self-organization through simple rules. Journal of Theoretical Biology 149
(1991) 547-571

17. Seeley, T.D., Camazine, S., Sneyd, J.: Collective decision-making in honey bees:
how colonies choose among nectar sources. Behavioral Ecology and Sociobiology
28 (1991) 277-290

Towards Distributed Reasoning for Behavioral
Optimization

Michael CebuUa

Technische Universitat Berlin, Fakultat fiir Elektrotechnik und Informatik,
Institut fiir Softwaretechnik und Theoretische Informatik,

Franklinstr. 28/29, 10587 Berlin
mceOcs.tu-berlin.de

Abstract. We propose an architecture which supports the behavioral
self-optimization of complex systems. In this architecture we bring to
gether specification-based reasoning and the framework of ant colony
optimization (AGO). By this we provide a foundation for distributed
reasoning about different properties of the solution space represented by
different viewpoint specifications. As a side-effect of reasoning we prop
agate the information about promising areas in the solution space to
the current state. Consequently the system's decisions can be improved
by considering the long term values of certain behavioral trajectories
(given a certain situational horizon). We consider this feature to be a
contribution to autonomic computing.

1 Introduction

The main target of our research consists in the definition of an architecture
which supports the integration of reasoning and optimization thus enabling
autonomic systems behavior. We take our starting point in the introduction
of concepts for the knowledge-based fuzzy specification of various systemic as
pects (extending our results from [1]). We show how it is possible to inex
pensively check the conformance of these properties by traversing the solution
space. These traversals of the solution space are performed by ant colonies. Ar
eas of the solution space which are promising w.r.t. to a certain specification are
marked with numerical information (frequently called trail). This information
is propagated to the current state where it can be exploited for the optimiza
tion of behavior. Since there are multiple aspects of systems behavior which
are examined by ant colonies different sorts of trail have to be evaluated in the
process of decision making. As we will see this task is performed by an entity
referred to as the queen.

In this paper we propose a hybrid architecture which integrates knowledge-
based modeling [2], automata-based techniques of reasoning [3] with ant colony
algorithms [4] in order to enable intelligent behavior of complex systems. In
order to give specific support for robustness of reasoning and behavior we rely
on fuzzy concepts for knowledge representation and reasoning.

Please use the foUoM'ing format when citing this chapter:

Cebulla, M.̂ 2006, in IFIP International Federation for Information Processing, Voliune 216, Biologically Inspired Coop
erative Computing, eds. Pan, Y, Rammig, F., Schmecli, H., Solar, M., (Boston; Springer), pp. 65-74.

66 Michael CebuUa

After firstly giving a brief introduction to our usage of fuzzy description
logics (in Section 2) we discuss a simplified application scenario (Section 3).
The semantic and algorithmic aspects of reasoning are described in Section 4
and 5. The architectural integration is discussed in Section 6.

2 Fuzzy Description Logics

For the fuzzification of description logics fuzzy sets [5] are introduced into the
semantics instead of the crisp sets used in the traditional semantics (cf. [2]).
For more detailed discussion of these issues cf. e.g. [6, 7].

If C is a concept then C^ will be interpreted as the membership degree func
tion of the fuzzy concept C w.r.t. X. Thus if d G A^ is an object of the domain
A^ then C^{d) gives us the degree of being the object d an element of the
fuzzy concept C under the interpretation X [6]. For some selected constructors
which were considered for description logics the interpretation function -^ has
to satisfy the following equations:

T^(d) = 1

L^{d) = 0

(C n Df{d) = min{C^[d), D^{d))

(C U DY{d) = max{C^{d), D^{d))

{-.Cf{d) = 1 - C^{d)

{3R.Cf{d) = supa,^A^{min{R^{d,d'),C^{d')}

(3T.Cf{d) = supa:^A^{min{T^{d,o),C^(o)}

(qR.Cfid) = {d\d e A^, \{d'\R{d, d') > 0}| > q}

{modqR.Cf {d) = {d | de A^,mod{\{d'\R{d,d') > 0}|) > q}

{{qu...,qn)R.C^{d) = {d\deA^,yie{l,...,n},#i{R{d,d'))>qi}

Remarks. In addition to roles we also support functional roles T which are
needed for the integration of fuzzy concrete domains AD (with o £ Ap). We
support a very simple style of quantifications allowing the use of positive rational
numbers q or fuzzy modifiers mod (defined by piecewise linear membership
functions). In addition we support a construct of tuple-valued cardinality which
will be used to represent quantification concerning different aspects. As we
will see such tuples contain global numerical information from different sources
(commonly referred to as trail).

From Suhsumption to Conformance. Deviating from common approaches based
on description logics we do not focus on model-based reasoning about equiva
lence or subsumption. This is the reason why we do not rely on tableaux-based
reasoning and thus do not have to face the resulting computational complex
ity (cf. [2]). In contrast we propose a syntax-directed approach for reasoning

Towards Distributed Reasoning for Behavioral Optimization 67

about the conformance of specifications. Specifications concerning different as
pects of systems behavior are compared with the specification of the solution
space. As we will see this is done by colonies of artificial ants. The require
ments related to conformance are represented by sets of constraints describing
morphisms. This approach is heavily influenced by [8].

3 Fuzzy Specifications

In this section we describe a simple example which we use to illustrate some
characteristics of our approach. We apply fuzzy terminologies to the description
of locations in sensor networks (cf. [9]). We use this concept as a high-level ab
straction since in many cases it does not make sense to address the individual
components of a sensor network explicitly. Alternatively such systems provide
the transparent access to data from interesting places (without having to men
tion individual components). Similar arguments and more details about sensor
networks can be found in [10],

A terminological description of a location is shown in the following (simpli
fied example):

loc-wl-xyz = 1.0 contains.Sensorl nO.7 contains.Sensor2 n
0.6 contains.SensorS

Sensorl = Benergy.^j n 3water-level.=8.5
Sensor2 = 3energy.=.8 n 3water-level.=9.i
SensorS = Benergy.^.g n 3water-level.=8.9

As an example we introduce a terminological description of a simple location
which contains three individual sensor components. The containment relation
contains is quantified by a relevance value of the specific sensor component in
the actual location. Note that this value is taken from the interval [0, 1]Q. For
the sake of our example sensor components contain data describing the current
energy level and data concerning the water level. Note that the relations energy
and water-level have to be treated as functional roles containing objects which
represent concrete domain values (cf. Section 2).

Scenario. For the sake of this presentation we assume that the system has
to decide which location it prefers in order to retrieve information in a given
situation. Thus the solution space in this scenario contains various behavioral
alternatives which each corresponds to the choice of an individual location.
Obviously the quality of a solution is determined by parameters like relevance
and energy-level. In our approach ant colonies have the task to retrieve this
information (related to these two different aspects) and to mark the trajectories
which conform best to their viewpoint specifications.

Viewpoint Specifications. In order to gain interesting information about the
current situation different viewpoint specifications are checked throughout the

68 Michael CebuUa

solution space. These specifications may concern different aspects like availabil
ity of energy, like relevance or like flooding.

high-energy = Most contains.energy(High)
high-relevance = Most contains.Sensor
flooding = Most contains.water-level(High)

Each of these three viewpoint specifications describe a criteria whose value
is important for the systems decision making. Note that in such specifications
we can use fuzzy terms like most and high. While most is defined in terms of
fuzzy role quantification high is defined on concrete domain values of energy.
Note that we are able to formulate less restrictive (and more robust) constraints
using fuzzy concepts. In our framework such specifications are associated with
colonies of ants which traverse the solution space (within a certain horizon) and
check accessible paths for their conformance w.r.t. a certain specification.

4 Semantics

In the following we will extensively use the fact that we can consider specifi
cations as tree-like term structures. For example both the systems specifica
tion as well as the viewpoint specifications can be represented in such a way
(cf. Figure 1). We propose a syntax-directed approach for reasoning about fuzzy
conform,ance which is based on the concurrent traversal of trees. Note that the
promising paths in the solution space are marked with their value of confor
mance as a side-effect of reasoning.

1.0 contains

I Sensor1]
w-level

loc-wl-xyz

. 0.7 contains 1^

(Sensor2|
level I

0.6 contains

SensorS
-level

I energy] | energy] [~~

Qss] [QT\ fgT] fas] [m\
energy]^

.891 foie I

high-energy

Most contains

[Sensor J

energy

"high]

Fig. 1. Tree-like Representations of Specifications

Observations and Experiments. Intuitively, we say that two specifications are
conform (to a certain degree) if they support similar observations and experi
ments. Observations and experiments on fuzzy specifications are described by
fuzzy transition systems (FTS).

signature FTS
obs: X X T ^ [0, 1]Q

next: X x T x X ^ [0, 1]Q

Towards Distributed Reasoning for Behavioral Optimization 69

In the signature of the transition system we can see that the observation and
transitions functions are multi-valued. In fact we are interested in observations
(whose content is represented by a fuzzy terminological concept) which hold to
a certain degree. On the other hand we want to know which costs are coupled
with a certain state transition (triggered by a terminological role). Thus the
apphcation of the transition function next yields a result which corresponds to
the (fuzzy quantification) of the role term which is used as parameter (frequently
referred to as costs).

Fuzzy Morphisms. In order to get a foundation for the notion of fuzzy confor
mance we rely on the notion of fuzzy morphism (cf. [11]).

Definit ion 1 (Fuzzy Morphism on F T S) . A fuzzy morphism f between two
fuzzy transitions systems Ai and A2 is given by: obs2{T) < obsi{f{T)), and
next2(,X2,T,X;,) < next^{f {X2), f {T) J{X'2)),

X2 xT-

obs2

[0,

/ f X id
• X i X r X2XT X X2 "Xi xTxXi

o b s i a n d n e x t i

•[0,1] [o; i] -

nex t2

•[0,1]

Fig . 2 . Fuzzy Homomorphism on Signatures

Note that we sometimes assume (in Figure 2 and elsewhere) that both spec
ifications use the same terminology T, We interpret positive differences between
observations as conformance values (e.g. obs2{T) — ohsi{T)). As a side-effect of
reasoning the solution space is annotated with these values. In the following
we heavily rely on an operational interpretation of these morphisms. For more
details concerning this approach cf. [12].

5 Reasoning

In this section we heavily use the argument that morphisms can be mapped on
bisimulations between automata (cf. [13]). We construct an automaton whose
purpose is to recognize such bisimulations between two fuzzy tree automata.
Such an automaton is called tree tuple automaton [3]. For the description of
transition rules we use concepts from membrane computing (cf. [14]).

Membrane-Based Tuple Tree Automaton. Intuitively the automaton checks
whether the systems description D supports the same experiments and ob
servations as a certain viewpoint specification S. If there are multiple exper
iments necessary copies of the automaton are created for every experiment.

70 Michael CebuUa

We exploit the characteristics of membrane computing and its computational
properties for the creation and handling of multiple copies of tree automata. In
our proposal the automaton for the recognition of bisimulation is implemented
as a rewriting P-system (on structured objects) (cf. [14]). In this formalism
we can use embedded membranes in order to articulate the tree-like structure
of a term. In addition membranes contain multisets of terminal symbols or
other information (e.g. trail). Consequently we can define transition rules for
the processing of expressions using the paradigm of multiset rewriting. While
(atomic) concept expressions are represented by molecules role expressions (and
their cardinalites) are encoded in membrane labels. In order to deal with fuzzy
expressions we support rational cardinalities of multisets. For more details on
our usage of P-systems cf. [12].

Def in i t ion 2 (P - s y s t e m for B i s i m u l a t i o n) . A P-system for bisimulation is
defined as a tuple PBS = {T, jJ-, w l , . . •, Wm, Ri, • • • Rm), where T is a terminol
ogy and fjL = [O[D\D[S\S\O is the initial configuration (of the membrane struc
ture).

While the membrane [D]D represents the systems description [s]s contains a
viewpoint specification. Intuitively in each step of the simulation the necessary
observations and experiments are drawn from the viewpoint specification (by
obss and nexts) and then apphed to the systems description (by obso and
nexto)- For simplicity we assume that both automata (and both specifications)
use the same terminology T.

The behavior of the automaton is defined by the following rewriting rules:

1. Atomic Concepts A E T :

[[DX]D[sA[Qa]Q]s] -^ [[DX,tf]D[s[Qa]Q[s], when obsD(A) > obs5(A)

Note that a molecule representing the conformance value d is introduced
into the systems specification per side-effect. Intuitively the molecule t (for
trail) is related to the i th viewpoint specification and represents a rational
conformance value d.

2. Basic Roles Q e T :

[[DX]D[s[Qa]Q]s] - [[Deinn-lhl{tf)]n[sa]s],
when next£)((5) > nexts{Q)

These rules describe a test concerning the costs of transitions. Thus by a
call to nexts we can retrieve the transitions which have to be supported
by the system's description D in order to stay conform to the specification.
Again trail is left when conformance is detected. We use the operation ann-
Ibl to introduce the molecule representing the trail information into the
tuple-valued quantification of the membrane-label (not explicitly shown in
the rules).

Towards Distributed Reasoning for Behavioral Optimization 71

For the treatment of the constructors from fuzzy description logics the fol
lowing rules can be used (selected examples). Note that the operators have
to be treated according to fuzzy semantics (cf. Section 2).

[DX]D[sAr\B]s]
[DX]D[S3Q.C]S]

[[n[[DX]D[3A]s][[DX\D[sB]s]h]
[LJis{i,...,fc}[i[n[Dnext']i5[sQ]s
[DnexV]D[sC]s]n]i],

In the rules for the processing of quantified role expressions (involving
atomic roles) the terms labeled with i have to be created for each i £ [1, fcy]
where kx is the branching factor of the tree. Intuitively this corresponds to
the creation of a copy of the automaton for each role filler of Q. next^ are
procedures for the exphcit navigation in trees (retrieving the i th subtree
of the current node). As we will see the fuzzy semantics of the operators
controls the propagation of trail.
The treatment of numeric quantification is similar to the treatment of quan
tification described above. For each role filler a copy of the automaton is
created.

[DX]n[sqQ-C]s]

[DX]D[smodgQ.C]s]

[Uie{i,...,k}[i[n[DTaex.V]D[sQ]s
[Dnext']u[sC]s]n]i] when #DQ > q
[^ie{i,..,,k}[i[n[Dnext'']D[sQ]s
[£)next']i3[sC]s]n]i] when mod{#DQ) > 9

Example. While comparing the specifications from our example the situation
in Figure 3 is constituted at some point. On the left hand side of the transfor
mation we see that experiments concerning most contains are prescribed by the
specification. Since there are three such experiments possible on the system's
description three copies of the automaton are created. Then the experiments
concerning contains are initiated concurrently (as shown at the right hand side
of the rule). For this mechanism we rely on the fact that membrane division is
a common and inexpensive operation in membrane computing (cf. [14]).

' obs(loeatlon) 1

L n —J

^ flooding

1 Senear 1 High |
1 L energy J

^ .

N

/

High
^ enemy '

V Mott contains _

Fig. 3. Example: Behavior of Tuple Tree Automaton

72 Michael Cebulla

Trail Propagation. In the final phase of reasoning about the conformance of a
viewpoint specification the information represented by the trail is propagated.
For this sake the numerical information is treated lilce a synthesized-atthhute
in attributed grammars (cf. [15]). Intuitively the information about promising
locations in the solution space is propagated to the the current state thus increas
ing the quality of the system's decisions. Again we exploit some characteristics
of membrane computing for the reactive propagation of this information.

' ' t' I [tJ
1.0 contalna ' 0.7 eonlaJna

AND —

I Sensor j I Sensor I I Sensor I

«' J ' M «' J
^ 1.0 contain ^ '^ 0.7 contain* ^ ^ 0.6 conlalnt ^ V>,

Fig. 4. Example: Trail Propagation

In the example transition in Figure 4 we can see how trail information
is propagated bottom-up through the membrane hierarchy. The rules for the
propagation are determined by the semantics of the operators (in this case n) .
According to Zadeh's logic the value of / is defined as the minimum of i,j, k.

6 Distributed Reasoning

We propose an architecture for the integration of high-level modeling, auto
mated reasoning and ant-colony optimization. Our goal is to propagate infor
mation about valuable places in the solution space in order to support decision
making in the current state. Generally we propose that systems rely on solu
tions found by ant colonies during normal situations while they have to depend
on default values for their decision in highly dynamic situations (represented
by so-called myopic heuristic information, cf [4]).

Integration. In order to collect additional information about the long-term val
ues of behavioral alternatives ant colonies iteratively traverse the accessible
trajectories. A given ant colony is embodied by a fuzzy tuple tree automaton
as discussed in the previous sections. Note that tree automata are copied into
multiple instances while examining different branches of a tree thus keeping the
correspondence to the metaphor of ant colonies. Since we use fuzzy morphisms
in our framework we assume that ants leave large amounts of trail on traces in
the systems state space where the conformance to their specification is strong.
The global choice between these solutions is performed by the queen. Note that
the marked traces in the systems behavior can be considered as trajectories
in an n-dimensionary hypercube. Unfortunately we cannot discuss the issue of
trail evaporation [4] due to space limitations.

Towards Distributed Reasoning for Behavioral Optimization 73

Example. In a simplified example we consider the situation that the system
(represented by the queen) has to choose between two locations. Obviously
at first sight it is not possible to decide which group of sensors to use (since
heuristic information about the costs - as represented by attribute def ~ are
equal concerning both alternatives).

select-first \ / select-second
[def".3, rel».6. eng=.4] / ^ ^ ^ ^ ^ ' ' ' ^ ^ [dBf=.3, rel=.9, eng".B]

/ StatB-2 \

Fig. 5. Example Situation

We assume that the ants examinations (concerning relevance and energy)
resulted in the values shown in Figure 5. Consequently it is the queen which
has to infer the best alternative from the available information. For this sake we
define the queen as a tree tuple automaton which performs a simple version of
multi-criteria optimization: the queen always selects the behavioral alternative
which is marked with the greatest global value (depending on environmental
parameters). Note that for simphcity we assume a non-fuzzy decision behavior
of the queen always resulting in the choice of exactly one behavioral alternative.

[{a,f3){{so,si,S2)Ai]{so,si,S2)AA{to,ti,t2)A2]{to,ti,t2)A2]{a,0) ^ U i • • - I A I

when maxi^2{si) > maxi^2{ti) and a > /?

[{a,/3)[{so,suS2}Ai]{so,si,S2)Ai[{to,ti,t2)A2]{to,ti,t2)A2]{a,0) ^ * U i • • - J A I
when So > to and P > a

For the sake of example we give two rules which describe the queen's decision
making in our scenario. We encode the information about trail into membrane
labels. The first rule describes how behavioral alternative Ai is selected on the
basis of trail information (represented by i i , ^2, Si, S2)- The global parameter
a denotes the weight of trail information (during normal environmental con
ditions) while (3 contains a high value when the situation is highly dynamic.
This case is described by the second rule where also Ai is selected but this time
on the basis of heuristic information (contained in so,to)- Remember that trail
information tends to be useless in the presence of environmental changes.

7 Conclusion

Our motivation in this paper is directed towards an architectural integration
of high-level knowledge-based modeling, of automated reasoning and of tech
niques for local optimization in order to support context-aware behavior in

74 Michael CebuUa

autonomic systems. For this reason we propose to use colonies of artificial ants
for the exploration of the solution space of complex systems. In this framework
we support distributed and robust reasoning about high-level specifications.
Knowledge about the systems properties is diffusing through the solution space
thus supporting decentral and distributed forms of decision-making and control.

References

1. Peter Pepper, Michael CebuUa, Klaus Didrich, and Wolfgang Grieskamp. From
program languages to software languages. The Journal of Systems and Software,
60, 2002.

2. Franz Baader and Werner Nutt. Basic description logics. In Franz Baader, Diego
Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-Schneider, edi
tors, The Description Logic Handbook. Cambridge University Press, Cambridge,
U.K., 2003.

3. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997. release October, Irst 2002.

4. Marco Dorigo and Thomas Stiitzle. The ant colony optimization metaheuristic:
Algorithms, applications, and advances. In Fred Glover and Gary A. Kochen-
berger, editors, Handbook of Metaheuristics. Kluwer Acad. Publ.: Boston et.al,
2003.

5. Lofti A. Zadeh. Fuzzy sets. Information and Control, 8(3):338-353, 1965.
6. Umberto Straccia. Reasoning with fuzzy description logic. Journal of Artificial

Intelligence Research, 14:137-166, 2001.
7. Steffen HoUdobler, Hans-Peter Storr, and Tran Dinh Khang. The fuzzy description

logic ALCFH with hedge algebras as concept modifiers. International Journal of
Advanced Computational Intelligence and Intelligent Informatics, 7(3):294-305,
2003.

8. Dusko Pavlovic, Peter Pepper, and Douglas Smith. Specification engineering, to
appear, 2006.

9. David Culler, Deborah Estrin, and Mani Srivastava. Overview of sensor networks.
IEEE Computer, 37:41-49, August 2000.

10. S. Madden, R. Szewczyk, M. Franklin, and D. Culler. Supporting aggregate
queries over ad-hoc wireless sensor networks. In IEEE Workshop on Mobile Com
puting Systems and Applications, 2002.

11. George J. Klir and Bo Yuan. Fuzzy Sets and Fuzzy Logic. Theory and Applications.
Prentice Hall, Upper Saddle River, N.J., 1995.

12. Michael Cebulla. Reasoning about knowledge and context awareness. In Proc. of
FLAIRS'06, 2006.

13. Jan Rutten. Automata and coinduction (an exercise in coalgebra). Technical
report, Centrum voor Wiskunde en Informatica, Amsterdam, 1998.

14. Gheorghe Paun. Membrane Computing. An Introduction. Springer, Berlin, 2002.
15. Donald E. Knuth. Semantics of context-free languages. Theory of Computing

Systems, 2(2):127-145, June 1968.

Ant Based Heuristic for OS Service Distribution
on Ad Hoc Networks

Tales Heimfarth and Peter Janacik

Heinz Nixdorf Institut, University of Paderborn
Puerstenallee 11, 33102 Paderborn, Germany

{ ta les , p j anacik}<5upb. de

Abstract. This paper presents a basic and an extended heuristic to
distribute operating system (OS) services over mobile ad hoc networks.
The heuristics are inspired by the foraging behavior of ants and are used
within our NanoOS, an OS for distributed applications. The NanoOS
offers an uniform environment of execution and the code of the OS is
distributed among nodes.
We propose a basic and an extended swarm optimization based heuristic
to control the service migration in order to reduce the communication
overhead. In the basic one, each service request leaves pheromone in
the nodes on its path to the service provider (like ants leave pheromone
when foraging). An optimization step occurs when the service provider
migrates to the neighbor node with the higher pheromone concentration.
The proposed extension takes into account the position of the node in
the network and its energy.
Realized simulations have shown that the basic heuristic performs well.
The total communication cost in average is just 40% higher than the
global optimum. In addition, both heuristics have a low computational
requirement.

1 Introduction

Distributed systems running on MANETs (mobile ad hoc networks) open a
new spectrum of applications but also bring new challenges. Many interesting
applications in this domain consist of collaborative distributed tasks among
geographically dispersed nodes. However, for a good resource utilization and for
an adequate development of such distributed applications, the support offered
by an operating system (OS) is important. The OS manages the hardware
resources and offers a common system call interface in each node simplifying
the application development.

The objective of this paper is to introduce a basic and extended heuristic
for service distribution used in our OS. NanoOS is a complex, innovative OS
for resource constrained embedded devices able to establish an ad hoc network.
The code of the OS is distributed among the wireless nodes in order to fit into
the small nodes.

Please use the following format when citing this chapter:

Heimfarth^ T.̂ Janacik^ P.̂ 2006, in IFIP International Federation for Information Processing, Volume 216, Biologically
Inspired Cooperative Computing, eds. Pan, Y, Rammig, E, Schmeck, H., Solar, M., (Boston: Springer), pp. 75-84.

76 Tales Heimfarth and Peter Janacik

As the OS components (services) are distributed, adapting automatically to
dynamically changing conditions by changing the distribution of functionality
across the ad hoc network is an important issue in our system. This adaptation
should also help to reduce the overhead and the energy consumption. For this
propose, we develop an distribution and migration algorithm based on swarm
intelligence which tries to reduce the communication among different nodes of
the system. As processing speed usually is orders of magnitude higher than
communication speed, this also affect positively the global performance of the
system.

2 Related Work

The academic system called MagnetOS [1] offers a distributed Java virtual ma
chine that provides an automatic migration of elements of the system trying
to maximize total application lifetime by utilizing power more efficiently. The
migration mechanisms have some similarities with our ant-based migration al
gorithm but different from our approach, it neither considers the resource avail
ability in the nodes nor the link quality.

Our problem of placement and migration of the OS services to different
nodes is very similar to a global scheduler that decides where the processes will
be executed in a distributed system.

The static scheduler makes the decisions just with information available at
compilation time. There are several theoretical analysis of the task assignment
problem. Some approaches consider a graph formed by system nodes together
with tasks as vertices and communication costs together with execution costs
as edges without considering a multi-hop network topology ([2, 3, 4]). Other
research deals with multi-hop networks with a complex topology ([5, 6, 7, 8]).

In our approach, we are using a dynamic distributed non-cooperative
scheduling strategy, i.e., the current state of the system is used in order to
drive the migration. Moreover, each service is an autonomous agent that de
cides itself when to migrate and to which node.

In the area of dynamic distributed scheduUng algorithms, there are a lot of
approaches that try to share the load of networked nodes among them ([9, 10]).

Although the algorithms are distributed, they do not take in account the
topology of the network. Moreover, movement of nodes is not considered.

3 Overview of the NanoOS

Our system is composed of three main components: the hardware, the OS and
the application running on top of it (see Fig. 1). The hardware platform consists
of a set of distributed mobile nodes, each one with small processing unit, limited
memory and wireless adapter. Our NanoOS runs on top of such an architecture

Ant Based Heuristic for OS Service Distribution on Ad Hoc Networks 77

and provides the adequate set of services to the apphcation. Besides the tradi
tional OS services , the NanoOS provides a set of special services to support
the distributed processing, like migration and distributed synchronization.

In our OS, each application is composed by a set of tasks. The OS provides
a uniform and remotely available system call environment even with movement
of nodes (and connections being broken).

For the purpose of reducing the per node OS footprint and to enable the
execution of a rather complex OS in very hardware constrained nodes, the
NanoOS distributes the services among the nodes. Each node of the system has
just a small part of the services of the complete OS; a group of nodes together
form an instance of the OS. At any instant of time one node may connect and
use a service residing in another node using a remote method invocation (RMI).

The Figure 1 presents an overview of the system. The tasks from applications
use services of the OS. In order to reduce the resource requirement in each
node, the services are shared among different application tasks executed in
other nodes.

The services and tasks can migrate in order to optimize communications.
Moreover, the same migration mechanisms used by the OS services are also of
fered for application level tasks. Apphcations' tasks can offer services to others
and may also automatically migrate. For sake of simplicity, we will speak from
here on simply about migration of services. The main contribution of this paper
is the algorithm presented that is responsible to assign dynamically the OS ser
vices (or tasks offering services) to nodes trying to minimize the communication
overhead.

4 Service Distribution Using Swarm Optimization

After a service discovery phase (not described here), a communication between
the node of the application task and the node hosting the service is set up.
We now assume a situation where tasks distributed in the system are commu
nicating with services which are distributed as well. A single path routing is
responsible for finding a good route between the nodes.

Application Tasks Services Ad Hoc network

^p--<useH I

jASsigmenr

Pig. 1. System overview
Fig. 2. Pheromone based service distribution

78 Tales Heimfarth and Peter Janacik

The objective of the service distribution is to change the location where
the services (and mobile tasks) are executed (migrating them) during runtime
trying to minimize the communication overhead.

There are possible constraints to the movement of the objects: only to a
direct neighbor (1 hop); within a neighborhood (k hops); or unbounded (infinity
hops). In this paper we are just considering 1 hop movements.

4.1 Load and Communicat ion Mode l s

To support the migration/reconfiguration process, the load of the hardware and
the communication pattern are important information and have to be exposed
to the OS. For this paper, a simplified load model, just considering the amount
of local free memory is used.

In order to model the communication, we create a link metric called virtual
distance and is represented by D{u, v) {d and v are nodes). It ranges from F to

r + A:

D{u, v) = r + A-{l~ (5f„,„) • /f„,„) . d/„_,) • el^^^)^^TATTZ) (1)

The used metrics are the error rate: e(^u,v) ^ [0,1] (0 means 100% of error
rate), the live time: l[u,v) € [0,1] (this metric varies according the relapsed time
of the link, 0 means new link), the delay (correlated with queue): (i(„_„) £ [0,1]
(0 means maximum delay, 1 means minimum delay) and the RSSI (received
power): Su,v) £ [0,1] (0 means no reception signal).

a, (3, 7 and (, define the weight of each metric in the geometrical mean.

4.2 Basic Heurist ic for Service Distr ibution

In our approach we are optimizing the position of the services of the system
through migration, i.e., we try to find the optimal configuration where the
communication overhead caused by the remote requests is minimized. In order
to solve this online discrete optimization problem, we decide to use an ant
inspired algorithm that is described in this section. It is relatively simple and
has shown good performance.

The system is represented by the graph G = {V, E) with nodes V and
bidirectional links E. The nodes correspond to the physical devices and the
links to the wireless connections. The links are weighted with the virtual distance
metric. Additionally, each service instance i € / is of a type p & P. A task a € A
has no type. We will use the word service and task to denote a service instance
and task instance. Each requester r e {I U A} (requester can be services or
tasks) of a service i e I has a service state 5^. A node v e V has a pheromone
table Py = \p^si]re{iuA},iei- This pheromone level represents the request rate
(and traffic) made by the requester r to the service i that are crossing the node
V. In our approach, all nodes are responsible for service distribution, since each
node's evaluation is based on its local view. Moreover, the needed information

Ant Based Heuristic for OS Service Distribution on Ad Hoc Networks 79

is constantly changing, due to frequent pheromone updates so that transferring
the decision to just certain nodes would incur an high additional communication
overhead without efficiency gains.

Using an analogy with the ant foraging behavior [11], the services in our
approach are the equivalent of the food source. The calls made by the requesters
are the agents (or ants) and the requesters are the nests. The wireless links form
the paths which the ants can use for movement. While the requests are being
routed to the destination service, they leave pheromone on the nodes.

The pheromone tables in each node are updated according to the equation

Psi.V' + ^) = —Wsnih)—' '^here the Sp{h) is the variation of the pheromone and
it is a function of the size of the packet.

In defined time intervals, each service evaluates whether it should migrate
to another node in order to improve the communication (reduce the overhead).
This neighbor is selected using the following method.

Let V £ V he the local node of the service i € I, d £ V is the destination
node of the service and Ny,v e V is the set of neighbors of v.

bi ,= ^^e{^u^}P^i .2) ei = max{bl^a),deN, (3)

l^yeN^ 2^xe{iuA}Psi,
bl^ii (eq. 2) represents a force between [0,1] that the service i migrates

form node v to node d. The selection of the final destination node ê G F of the
service i is made simply using the expression 3.

The migration process is initialized when the sum of pheromones of some
neighbor exceeds a threshold value 0.

In Fig. 2, a scenario with six nodes is shown. In this scenario, node 1 has
the task a tha t accesses the service A in node 3. At the same time, tasks f5 and
7, located in the nodes 5 and 6 respectively, are also using the service A. Let's
assume that the pheromone related to the connection a ^ ^ in the node 2 is
PIA = 0.3, the pheromone of the connection /3 —> A in the node 4 is p t ^ = 0.2

and the pheromone of the connection 7 —> A is p t ^ = 0.2. According to equation

2, the force attracting this service to the node 2 is & _̂,2 = Q 3_|_O'2+O 2 ~ 0.428

whereas the force attracting to node 4 is b^_^^ = Q 3+^2+^0 2 ~ 0.571. This

means that the service A will migrate to the node with higher total pheromone

level, i.e., node 4.

Direct ion Extens ion In this section, an identified problem caused by the
greedy nature of the presented algorithm is described and a solution is proposed.
The problem occurs when more than one nearly located tasks request the same
service, but due to the routing algorithm, the requests use different paths. An
example of such situation is depicted in Fig. 3. This situation can only occur if
there are more than two requesters using the same service. It is more likely to
occur when the service is located in a node-dense area of the network.

In Fig. 3, the tasks a, /? and 7 are accessing the service A in node 3. The
total communication cost C can be calculated using the eq. 4, where A is the

80 Tales Heimfarth and Peter Janacik

#1 #A

C = ^ ^ B{ak,ii) • D{Q{ak), Qiii))
k=l 1 = 1

(4)
Fig. 3. Instance that results in wrong
migration

set of application tasks: A = {ai, 02,..., a ^ } and / the set of service (instances)
of the system I = {ii,i2, •••,in}-

The function B{am,in) > 0 gives the average bandwidth utilization by the
requests made by the task am to the service i„. The function Q : AU I ^> V
maps the tasks and services to the hosting node. The objective function of the
service distribution heuristic is to find the assignment function Q tha t minimizes
the communication cost C (and therefore minimizes the energy consumption,
assuming that communication is a major energy consuming operation). Our
problem is a special instance of the QAP {Quadratic Assignment Problem),
where instead of Euclidean distance between points, the sum of the virtual
distances of the routed path is used {D{v, w), where w, w E F) and the cost is
given by the bandwidth utilization {B{a, i), where a £ A and i e /) . It is known
that the QAP is an NP-hard problem [12].

Returning to our example (Fig. 3), as the average bandwidth utilization
is proportional to the pheromone deposited in a node inside the used path,
the total communication cost in this case is 16.2 (calculated using eq. 4). As
the pheromone in the node 2 is higher than in the nodes 4 and 5, the next
step of the basic algorithm would be to migrate the service A to node 2. Here,
the communication cost is 17.4. This result shows that the heuristic selects
the wrong node to migrate to, increasing the total communication cost. This
happens because of the lack of information over not directly connected parts
of the network. The main idea of the improvement is to migrate the service
not to the neighbor with the biggest amount of requests (requests we call also
flow) but to the neighbor whose flow (request traffic) is crossing near to nodes
that are in flows from other requests to the same service. If the defined metric
(virtual distance) has (geographical) norm properties, this will be equivalent to
migrating the service to the geographical direction where the highest amount
of requests is coming from. Two requests coming from task a and (5 (see Fig.
3) are transversing neighboring nodes in order to reach A, thus, they should
attract the service instead of 7.

In addition, the new migration heuristic is based not just on the pheromone
level to drive the migration of the services, but also on a "potential goodness" of
each node to receive highly loaded services and the energy level of the nodes. The
"potential goodness" ?7„, measures how appropriate it is for node v to receive
service i, i.e., whether the node is central in the network and the service i is

Ant Based Heuristic for OS Service Distribution on Ad Hoc Networks 81

a highly required one. If the complete network would be known by each node,
the centrality could be measured by the sum of the distances to every other
node. The idea of the potential goodness is that services with high flow are
coupled with high probability to locations with good connections to others.
Just using this rule, it is possible to obtain good (but not optimal) placement
of the services in the network [11].

Definitions and heuristic description:
Like in basic heuristic, each node has just local information, we define ?7„i

where v e V, i £ I and 0 < »7„i < 1 in eq. 5.

D{v,g) . , , . . , . b' = t^^--''^'' • t'^'^']^ • t^''

g€N„
.r • [•n.if • [E.V

(6)

ieiv„

where A^„, v € V the set of neighbors of v and 5 > 1 gives the importance of
the number of neighbors, and Dmax gives the maximum allowed virtual distance.
h{i) : 7 —> [0,1] returns the current request load (how much traffic) that service
i is currently serving (where 0 means the service is idle and 1 means full load).
The energy of the node is given by Ey and Q < Ey <\, where 1 means full and
0 empty.

In addition to the already presented pheromone table P^, that stores the
rate of requests that are crossing the node w, there is a second table Fy that
stores the information about the flows that are occurring in the neighbor nodes.
Fy{S^) : {I U A} X I -^ {Q, 1} return 1, iff some direct neighbor of the node v
is routing a request from the requester r to the service i.

The idea is that neighboring communications (like the Sg and 5 ^ in the
figure) can be recognized as coming from the same network "direction" by the
service A.

The table Â „ is filled without the necessity of any direct exchange of mes
sages between the node v and the neighbors. Each node just hears the commu
nication originating from neighboring nodes to fill the table. If the node v has
a directed connection to the node u where the service i is located, it ignores all
the neighboring communication going to to the service i (i.e., for Vr G {lUA},
Fy{Si^) = 0). This avoids the problem that near the sink (service i) all nodes can
hear each other, resulting on a false interpretation that all requests are coming
from a similar direction.

Each request r to the service i now carries the information collected in the
nodes about which requests to the service i are occurring in neighbor nodes
(i.e., it collects the Ny information of the nodes when travehng to service i).
F{Si^,SiJ : {IUA}X{I(JA}XI -^ {0,1} return 1 iff n and r2 are neighboring
requests (flows).

In the original heuristic, the "force" attracting the service i from node v
to node d {b^^^, see eq. 2) does not take into account the requests coming

82 Tales Heimfarth and Peter Janacik

from near areas of the network. The new bl_^^ is calculated now in two steps.
In the first, the T * ^ ^ take in account the pheromone (and neighboring flow
information) and rate the attractiveness of node d (eq. 7).

E psj+ E E E plf\pk^-nsi,si)
xe{IUA} xe{IUA} z£{IUA) geN^-{d}

E^ H pii+ E E E pk-\p^t^-Fisisi)]
!/eN„ xe{iuA} xe{iuA} ze{iuA} geN„-{d}

(7)

The first term is the same of the eq. 7, that means, the sum of all requests
coming to service i through node d. The second term of the numerator is the sum
of the pheromone from flows that are neighbors of the ones traveling through
d. As already explained, the F function tests whether 5* and 5J are neighbor
flows, and the ceiling [p^;] checks whether the connection SI exists in the node

d (i.e. Pgi > 0). The denominator normalizes r (0 < T^^^ < 1).

Finally, the eq. 6 returns the new &̂ _,rf that is the force between [0,1] that
the service i migrates from node v to node d. This combines the pheromone
value (with direction concept, eq. 7) with the potential goodness of a location
to some service and the available energy. The selection of the destination node
of the migration is made, like the basic heuristic, using eq. 3.

Returning to the example shown in Fig. 3, and assuming that all the nodes
have the same potential goodness and energy (= 1), for sake of simplicity
and that a , /3 ,7 = 1, T^_^2 = bi^2 = 0.3+0:4+0.4 = 0-27- T^-.4 = ^^^4 =
OMMA = 0-36 and T^_^, = bi_^, = oMSw4 = 0-36- This result shows
that the service A will migrate correctly to the node 4 or 5 instead of 2 when
the basic version of the heuristic is used.

5 Results

A simulation environment to evaluate our basic ant-based service distribution
heuristic was implemented in C-I-+ using the Boost library for graph algorithms
support. The routing of network traffic was idealized by using Dijkstra shortest
path algorithm.

Instances of the ad hoc network were generated by random selection of
nodes' position. Moreover, the task force and the services of the OS including
also the usage (dependency) graph were also randomly generated.

The received signal strength (RSSI) was calculated using the free space
model for an isotropic point source in an ideal propagation medium (free-space
path loss with rx,tx unitary gain: Lf = ^^T")- ^ h e limits of the RSSI were
determined using two thresholds that have the meaning of maximum signal
strength and no signal (unit disk graph). The RSSI was the only metric used
to produce the virtual distance (see Equation 1).

Ant Based Heuristic for OS Service Distribution on Ad Hoc Networks 83

As already said, the objective of the heuristic is to find the assignment
function Q that minimizes the communication cost C (and therefore minimizes
the energy consumption, assuming that the communication is the main energy
consuming operation). We restrict the maximum number of services and tasks
to one per node. This simulates a simpMstic resource constraint per node.

We run 10.000 different problem instances and the presented basic heuristic
is applied in the first assignment (randomly generated). Fig. 4 shows the results.
The X-axis shows the number of optimization steps of the algorithm, where the
y-axis shows the average communication cost among all the realized simulations.
The two straight lines depict the average communication cost of the first random
solution to the assignment and the optimal solution (calculated using Branch
and Bound over the QAP). Figure 5 shows the cumulative distribution of the
testing cases.

Cumulative distribution of cases (iieurist. assigm. / optimal)

Random distribution

20 0%
SI Optimization steps I x (Optimal) 1,5

Pig. 4. Results of the simulations Fig. 5. Cumulative distribution of the
cases

6 Conclusions

In this paper we present the concept of the NanoOS for highly distributed ap
plications running on ad hoc wireless networks. This OS allows the migration of
application/OS services among nodes. The investigated objective was the mini
mization of the communication overhead between application tasks and services
in an ad hoc network. We proposed ant-based heuristics. The problem was mod
eled in detail and the quality of our ant-based method was compared with the
global optimum using simulations of a large number of problem instances.

The realized simulations of the basic heuristic have shown that it performs
well in average (71.97 of cost compared with 50.16 that was the cost of the
optimal distribution), i.e., the total communication cost is in average only about
40% higher than the global optimum obtained using Branch and Bound. The
initial random distribution of services has an average cost of 176.6. Looking at
the cumulative distribution of cases (Fig. 5), we see that for the majority of
test cases (70%), the heuristic could find solutions that cost at most 2 times
the optimal value. In 40% of the cases, the heuristic could find the optimum.

84 Tales Heimfarth and Peter Janacik

Moreover, our heuristics have an extremely low computational cost and a
small information dependency, where just local communication is necessary for
the migration decision. They are also adaptive to changes in the network and
can be executed in a distributed manner where each entity tries itself to find a
good assignment.

We are planning to simulate the extended version of the heuristic in order to
compare it with the actual results. We also want to include movement into the
simulation in our future work. Concluding, the results give yet another piece of
evidence that principles encountered in the nature (like agents doing just local
interactions helping to achieve global results) can be transferred to computers
with satisfactory results.

References

1. Emin G Sirer, Rimon Barr, T. W. D Kim, and Lan Y Pung. Automatic code
placement alternatives for ad-hoc and sensor networks. Technical report, Cornell
University, Ithaca, NY, USA, 2001.

2. H. S. Stone. Multiprocessor scheduling with the aid of network flow algorithms.
IEEE Trans. Software Eng., SE-3:85 -93, 1977.

3. V. M. Lo. Heuristic algorithms for task assignment in distributed systems. IEEE
Trans. Comput, 37(11):1384-1397, 1988.

4. S. Ramakrishnan, I. H. Cho, and L. Dunning. A close look at task assignment in
distributed systems. In In IEEE INFOCOM 91, pages 806 - 812, Miami, 1991.

5. Kenjiro Taura and Andrew A. Chien. A heuristic algorithm for mapping communi
cating tasks on heterogeneous resources. In Heterogeneous Computing Workshop,
pages 102-115, 2000.

6. Nectarios Koziris, Michael Romesis, Panayiotis Tsanakas, and George Papakon-
stantinou. An efHcient algorithm for the physical mapping of clustered task graphs
onto multiprocessor architectures. In Proc. of 8th Euromicro Workshop on Paral
lel and Distributed Processing (PDP2000), pages 406-413, Rhodes, Greece, 2000.
IEEE Press.

7. M. Eshaghian and Y. Wu. Mapping heterogeneous task graphs onto heterogeneous
system graphs. In Proceedings of Heterogeneous Computing Workshop, 1997.

8. R. F. Preund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman, D. Hens-
gen, E. Keith, T. Kidd, M. Kussow, J. D. Lima, F. Mirabile, L. Moore, B. Rust,
and H. J. Siegel. Scheduling resources in multi-user, heterogeneous, comput
ing environments with smartnet. In In Proceedings of Heterogeneous Computing
Workshop, 1998.

9. Christophe Lang, Michel Trehel, and Pierre Baptiste. A distributed placement
algorithm based on process initiative and on a limited travel. In PDPTA, pages
2636-2641, 1999.

10. Shyamal Chowdhury. The greedy load sharing algorithm. J. Parallel Distrib.
Comput, 9(l):93-99, 1990.

11. Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence: From
Natural to Artificial Systems. Oxford University Press, New York, NY, 1999.

12. Sartaj Sahni and Teofilo Gonzalez. P-complete approximation problems. J. ACM,
23(3):555-565, 1976.

An Artificial Hormone System for
Self-organization of Networked Nodes

Wolfgang Trumler, Tobias Thiemann, and Theo Ungerer

Institute of Computer Science
University of Augsburg

86159 Augsburg
Germany

{trumler,ungerer}@email.address, thiematoOweb.de

Abs t rac t . The rising complexity of distributed computer systems give
reason to investigate self-organization mechanism to build systems that
are self-managing in the sense of Autonomic and Organic Computing.
In this paper we propose the Artificial Hormone System (AHS) as a
general approach to build self-organizing systems based on networked
nodes. The Artificial Hormone System implements a similar information
exchange between networked nodes like the human hormone system
does between cells. The artificial hormone values are piggy-backed on
messages to minimize communication overhead.
To show the efficiency of the mechanism even for large scale systems
we implemented a simulation environment in Java to evaluate different
optimization strategies. The evaluations show that local information is
enough to meet global optimization criterion.

1 Introduction

State of the art computer and software systems raise the level of complexity to
unexpected heights. Upcoming ubiquitous environments with their huge amount
of different devices and sensors aggravate the situation even more. The need for
self-managing systems, as proposed by IBM's Autonomic Computing [1] and
the German Organic Computing [2] initiative, has never been more important
than today. Future systems are expected to comprise attributes motivated by
self-organizing natural systems as e.g. organisms or societies.

Self-organization seems to be embedded in biological systems in many ways.
In the human body it arises at lower levels (e.g. the growth of an organism
controlled by hormones) as well as at higher levels (the regulation of the ho-
moeostasis by the autonomic nervous system).

We developed the AMUN middleware [3] to foster the development of ubiq
uitous computing environments such as Smart Office environments [4]. The aim
of the middleware is to build service-oriented applications that can be distrib
uted on networked nodes. The services which can be distributed and relocated
between the nodes are monitored to collect information about their runtime
behavior and resource consumption.

Please use the following formatwhen citing this chapter:

Trumler, W., Thiemann, T, Ungerer, T, 2006, in IFIP International Federation for Information Processing, Volume 216,
Biologically Inspired Cooperative Computing, eds. Pan, Y, Rammig, F., Schmeck, H., Solar, M., (Boston; Springer), pp.
85-94,

86 Wolfgang Trumler, Tobias Thiemann, and Theo Ungerer

To implement the autonomic/organic goals within the AMUN middleware
we propose a self-organization mechanism based on the human hormone sys
tem. The basic idea is to use the messages from services as containers for the
information of our Artificial Hormone System like the hormones use the blood
circuit in the human body. Each node locally collects information and packs
its information onto outgoing messages. The important point is that no extra
communication mechanism is used and no explicit messages are generated to
exchange the information for the self-organization.

The remainder of the paper is structured as follows: In section 2 the human
hormone system is described from an abstract point of view with focus on the
mechanisms that were transferred to the Artificial Hormone System. Related
work is presented in section 3. The model of the Artificial Hormone System
is described in section 4 and evaluated in section 5. The paper closes with a
conclusion and future work.

2 Human Hormone System

The human body contains different systems for information transport, depend
ing on the speed of the stimulus transportation and the size of the affected area.
The central nervous system is used for fast information transport of consciously
given commands whereas the autonomic nervous system and the hormone sys
tem are mostly detracted from human's will. Together they regulate the human
body to keep the inner environment as constant as possible, called homoeostasis.

The human hormone system differs from the autonomic nervous system in
the way information is transported. The autonomic nervous system uses elec
trical impulses, whereas the hormone system uses chemical messengers (hor
mones). Beside the mostly known way to spread hormones through the blood
circuit to trigger reactions in other parts of the body, a number of other kinds
of messengers are known, which do not influence our Artificial Hormone System
and therefore are not described here (see [5], [6], and [7] for further details).

The hormones spread to the blood circuit can theoretically reach every cell,
but only act on those cells which possess the corresponding receptors. The
hormones bind to the receptors and send their information to the inside of the
cell on a chemical basis. The usage of receptors has two advantages. First the
binding of a hormone can be shortened to designated cells, and second the same
hormone can lead to different effects within different cells.

The reaction of the cells is controlled by the distribution of the activator and
inhibitor hormones. In many cases the production of activator hormones lead
to the production of inhibitor hormones to neutralize the reaction of the cells.
This mechanism is called a negative feed-back loop because of the repressive
effect of the inhibitors.

An Artificial Hormone System for Self-organization of Networked Nodes 87

3 Related Work

In 1952 Alan Turing published "The Chemical Basis of Morphogenesis" [8].
Inspired by an invertebrate freshwater animal called hydra, he investigated the
mathematical foundations for the explanation of the chemical processes during
a morphogenesis. The hydra has the remarkable feature, that if it is cut in half,
the head end reconstitutes a new foot, while the basal portion regenerates a
new hydranth with a mouth and tentacles. During this process the available
cells are reformed, moved, and redifferentiated to build new tissue without cell
proliferation. One of the application areas of Turing's reaction-diffusion model
is the generation of textures as described in [9].

The Digital Hormone Model [10] adopts the idea of hormone diffusion to
the distributed control of robot swarms. The equations investigated by Turing
combined with the limited wireless communication capabilities of robots can be
mapped to the reaction-diffusion model known from tissues. The information
of a robot can diffuse to the neighboring robots in vicinity. Simulations showed
that such a distributed control algorithm can be used to control a robot swarm
to fulfill different tasks. The challenges were to find and size targets, to spread
and monitor a region, and to detour obstacles during mission execution.

For peer-to-peer and sensor networks so called Bio-Inspired approaches are
currently investigated. In [11] an approach for a self-organizing peer-to-peer
system in terms of load balancing is described. The authors show by simulation,
that only local knowledge and the distribution of local information to randomly
chosen nodes are sufficient to balance the load of the nodes nearly optimal. For
sensor networks an approach exists that mimics the control loop for the blood
pressure of the human body [12]. Information is disseminated in the network
like hormones in the human body and a feedback loop is used to decide whether
the requested task is already accomplished.

4 Model of the Artificial Hormone System

The AHS consists of four parts that can be directly mapped to their human
counterparts. First we have metrics to calculate a reaction (transfer of a service
in our case), which can be compared to the functions of the cells. Second, the
hormone producing tissues of the human body are influenced by receptors which
observe the environment to trigger hormone production. This behavior is mod
eled by monitors which collect information locally about the running services
and piggy-back this information onto outgoing messages. Third, monitors for
incoming messages collect the piggy-backed information and hand them over to
the metrics, which is the same as the receptors of the cells does. And fourth,
the digital hormone values carrying the information.

To further reduce the amount of information needed to exchange, we assume
that the digital hormone value enfolds both, the activator as well as the inhibitor

88 Wolfgang Trumler, Tobias Thiemann, and Theo Ungerer

hormone. If the value of the digital hormone is above a given level, it activates
while a lower value inhibits the reaction.

The AHS will be included into the AMUN middleware to implement the
self-optimization. The services can be relocated during runtime to meet the
optimization criterion of the self-optimization as good as possible. Thus the
model of the AHS must take some requirements into account given by AMUN.
In AMUN services run on the nodes and can be transferred to other nodes. The
services consume resources and the optimization should distribute the services
such that the resource consumption on all nodes is nearly equal. Resources can
be CPU, memory, communication bandwidth, battery status, radio range or
any other resource suitable for the optimization of an application.

The idea of the AHS is to define the resources used for the optimization
process and a corresponding digital hormone value. The model assumes that
the values of the hormone values are normalized to fit into an interval from 0 to
100. The hormone value describes the consumption of a resource. In combina
tion this can be interpreted that the hormone value represents the percentage
consumption of a resource. As mentioned above these values are calculated by
the monitors which observe the services in the middleware. In the model we
have to define these values initially for the simulation process.

4.1 Mathemat ica l Mode l

Given k resources, the consumption of resource i for service s is characterized
by ri{s), 1 < i < k, which is normahzed such that all resources i satisfy the
condition 0 < ri{s) < 100. The allocated amount of a resource i for all services
s € S{n) (the set of running services on node n) is computed as follows:

sS5(n)

Ri{n) is the total consumption of resource i of all services on node n. In our
model the maximum capacity for each resource i on every node n is always 100.
So any time the inequation 0 < Ri{n) < 100 holds for all resources i and all
nodes n. The number of services assigned to one node is limited by the nodes
capacity and must not be violated by a service transfer.

To balance the load within the network it is assumed that services can be
transferred from one node to another. The cost for the transfer to another node
is modeled as the service transfer cost te(s), 0 < tc{s) < 100 which can be
different for every service.

Simulat ion initialization The initial state of our simulation model is chosen
randomly to ensures that our optimization strategies are evaluated under a
great variety of start conditions.

To initialize a node, a random maximum capacity value between 0 and Cmax
is chosen for every resource of the node. Then services are created with random

An Artificial Hormone System for Self-organization of Networked Nodes 89

values for each resource. The maximum value for Cmax of a node and the re
sources r,^^^ of a service are defined prior to the initialization of the simulation.
Services are generated as long as the maximum capacity of the node's resources
are not exhausted as defined by equation 1. If a node is filled with services the
procedure is repeated for the next node until all nodes are initialized. Regarding
the mean value of the nodes resource consumption, this guarantees that for /
nodes we generate a total load of « Z^™^ randomly distributed on all nodes.

On the other hand this assures that the number of generated services differ
from every initialization depending on the number of nodes, the maximum
initial capacity of the nodes Cmax, and the maximum values given for the service
resource parameters ri^^^.

Service communicat ion model As the digital hormone values are piggy
backed on the outgoing communication, it is important to model the commu
nication paths between the services. The communication model relies on the
assumption that certain services prefer to communicate with each other while
others don't. This behavior can be observed by many systems where the usage
dependencies between different modules or classes are given due to the structure
of the application and the resulting method calls.

Hence each service is assigned a constant set of other services acting as its
communication partners. In each step of the simulation a given number of ser
vices are chosen to be senders and for each of these services Sgend a receiving
service Srec is randomly picked out of their communication partners. Assum
ing that service Sgend is running on node risend and service Srec is running on
node rirec the information necessary for the optimization is piggy-backed on the
message sent from nsend to rirec-

If there is a node which had no services assigned during the initialization, it
could not participate in the optimization process thus loosing the free capacity
of this node. In a networked system this situation might occur if a node was
not present during the initial resource allocation phase. Such nodes will con
nect other nodes of the network sooner or later which is modeled by a certain
probability to choose empty nodes as sender nodes nsend- As these nodes do not
have a predetermined set of receivers a receiver node rirec is randomly chosen
out of all other nodes.

4.2 Transfer Strategies

In the optimization process node ngend adds information about its resource
consumption to a message sent by one of its services to node n^ec- Based on
this information node n^ec uses a Transfer Strategic (TS) to decide whether
to transfer one of its services to rigend or not. To avoid confusion it should
be mentioned that the terms risend and rirec refer to the direction of message
passing. However, a service is transferred in the opposite direction from Urcc to
"•send- In the following we present different Transfer Strategies from very simple
to more sophisticated ones. All TS have in common that they only have local

90 Wolfgang Trumler, Tobias Thiemann, and Theo Ungerer

knowledge and those information received from its communication partners.
Furthermore there is no central instance to control the optimization process.
Only the simulation environment has the possibility to check the state of the
nodes after every simulation step to produce evaluation output.

Weighted Transfer Strategy The first TS is called Weighted Transfer Strat
egy because it uses weights for every resource to weight them in the decision
process. The load of all resources multiplied by the corresponding weights are
added and divided by the total amount of the weights. This value is the load
value of a node. If all weights are one, all resources are treated equally, if one
resource is weighted higher than the others evaluations show that the higher
weighted resource is optimized better at the expense of the others.

If the node rirec got a message from node ngend it subtracts the load value
of rigend from its own. If the result is positive this means that the sender has a
lower load than this node and that a service might be transferred to the sender.
If the result is equal or less than zero, nothing will be done, as the sender's load
is already equal or higher than the local load. To find a service for the transfer
the loads of all services are compared to the half of the load difference and the
service with the minimal distance to that value will be chosen for the transfer,
as it best adjusts the load values of both nodes.

Transfer Strategy wi th Dynamic Barrier This TS uses a barrier to sup
press the transfer of services. Evaluations showed, that the Weighted Trans
fer Strategy produces a high amount of service transfers beyond the estimated
value. The TS with Dynamic Barrier continuously calculates the gain that could
be obtained if a service would have been transferred. The dynamic barrier rises
if the gain falls and vice versa.

The barrier can be calculated with a linear, an exponential, and a logarith
mic function, while the latter produces the best results in terms of responsive
ness due to load changes and attenuation behavior.

Transfer Strategy wi th Load-Estimator The problem of the Weighted TS
is the missing knowledge about the total system load. If every node would know
the load of all other nodes the mean load could be calculated and every node
could trigger or prevent transfers depending on the load of the receiver and the
sender node. With this TS a node keeps the last n load values of its sender
nodes and calculates a mean load value. A service will only be transferred, if
the senders' load is below and the local load above this value. A transferred
service would not only optimize the load between the two nodes but also the
overall load of the system, which is not always the case with the Weighted TS.

The TS with Load-Estimator is the best TS in terms of required service re
locations. It nearly reaches the calculated theoretical optimal value. The draw
back of this Strategy is the missing tolerance to dynamic service behavior. If
the services change their load dynamically the strategy tries to further optimize
the system and thus produces unwanted service relocations. The same applies
for the Weighted TS.

An Artificial Hormone System for Self-organization of Networked Nodes 91

Hybrid Transfer Strategy The fourth TS combines the advantages of the
TS with Load-Estimator and the TS with Dynamic Barrier. At the beginning
of the optimization process only the TS with Load-Estimator is used. If the
change of the calculated estimated load is less than 10% within two consecutive
steps, the TS with Dynamic Barrier is used additionally which results in an
attenuated transfer behavior especially in case of dynamically changing service
loads.

5 Evaluation

To evaluate the self-organization of the AHS we developed a simulation envi
ronment in Java. For the simulations we chose three resource parameters for
the optimization. The different TS were simulated and the service transfers and
the mean error of the average resource consumption have been measured. The
simulator uses steps to perform the calculation and produces output after every
step. We ran every simulation with 1000 nodes and 2000 steps a 100 times to
take into account different starting conditions due to the random initialization
process of the simulator. Thus we can show that the TS are independent of the
initialization and produce good and stable results.

5.1 Service Transfers

Figure 1 shows the amount of service transfers of the different Transfer Strate
gies and the mean error of the average resource consumption. The mean error
is the mean difference of a node's resource consumption from the expectation
of the resource consumption. This value shows how good the algorithm reaches
the theoretical optimum. The charts show that all four TS achieve good op
timization results with a mean error ranging from 0.62 to 1.47 with varying
amounts of service transfers. The Weighted TS needs about 5300 transfers, the
Dynamic Barrier 3000, the Load-Estimator needs about 2300, and the Hybrid
TS uses about 1750 transfers after 2000 simulations steps.

The mean resource consumption of a node for the simulations was 41,25.
The lowest mean error reached with the TS with Load-Estimator is 0,62. This
means that the optimization achieves 98,5% of the theoretical optimum. The
least service transfers are generated by the Hybrid TS which achieves a mean
error of 1,47 resulting in an optimization quality of 96,5% of the theoretical
optimum. The Hybrid TS offers the best trade-off between service transfers
and optimization quality.

With the amount of produced services during the initiaUzation phase and
the mean error at the beginning of the simulation the theoretical amount of ser
vice transfers needed to optimize the network can be calculated. For the above
simulations this value is about 2300 service transfers. This implies that the TS
with Load-Estimator produces the best result with the least error and that the
Hybrid TS does not utilize all transfers as the dynamic barrier suppresses those
transfers with a low gain.

92 Wolfgang Trumler, Tobias Thiemann, and Theo Ungerer

6 0 0 0

5 0 0 0

•1 dOOO

1
1^ 3000
S
£
^ 2000

1000

0 •

1
500

.-̂ -

1000

S i m u l a t i o n S l a p s

Weightad

Load-Eslimator

Hybrid

1500

„ J

2000

25 -|

20 •

i

5 •

0

1

"i

\ •

\ \

Weighted

Load-Eelimalor

Hybrid

500 1000 1500 2000

Pig. 1. Service transfers and the corresponding mean errors for the different TS.

Variation of N o d e N u m b e r To test the scalability of the systems we sim
ulated networks with 100 to 5000 nodes. The number of services created is
directly proportional to the number of nodes as expected from the initialization
as described in section 4.1. Figure 2 shows that the service transfers increase
only linear with the amount of nodes and services. The mean error remains
nearly constant for all TS.

JSODO

1""
^ 15000

s

5000

-^w„» . .

't'lc'.""""

^

^^
*

•

iwa sooo

Fig. 2. Service transfers and mean error of the TS at varying node numbers.

D y n a m i c Services To evaluate the TS in a dynamic environment, we sim
ulated a dynamic behavior of the services. Therefore a predefined amount of
services change their resource consumption such that they raise or lower their
resource consumption, hold that new value for a while and return to the initial
value.

As expected the TS with Dynamic Barrier and the Hybrid TS tolerate the
changes of the services' resource consumption while the other TS begin to os
cillate resulting in a dramatic increase in service transfers. For both evaluations
we defined 10% of the services to change their resource consumption up to 50%
of the current value. The left chart of figure 3 shows the results if the change
takes 10 simulation steps and 100 steps for the service to rest at its normal

An Artificial Hormone System for Self-organization of Networked Nodes 93

Fig. 3. Service transfers of the different TS with dynamic services.

level before the next change. The left chart shows the results for a 50 steps long
change while the idle time is 100 steps which.

6 Conclusion and Future Work

In this paper we proposed the Artificial Hormone System for self-organization
in networked systems. Derived from the human hormone system we developed
a distributed algorithm that has neither a central control nor complete knowl
edge about the system. The organizational information is piggy-backed on top
of the messages exchanged between the nodes of the networked system. The
general approach of the AHS is described and implemented in a Java simulaton
environment.

Evaluations showed that the AHS distributes services of networked nodes
nearly optimal in terms of resource consumption and that the effort needed for
larger networks increases only linear with the amount of nodes. Further eval
uations regarding dynamic process behavior showed that the Hybrid Transfer
Strategy tolerates load changes. The Hybrid Transfer Strategy is able to adapt
the barrier to the mean load change, thus only few additional service transfers
are produced due to dynamic process behavior.

Future work will be to implement and evaluate the AHS in AMUN and to
further investigate the latencies produced by a service transfer and the corre
sponding costs for the optimization algorithm.

References

Horn, P.: Autonomic Computing: IBM's Perspective on the State of Information
Technology, http://www.research.ibm.com/autonomic/ (2001)
VDE/ITG/GI: Organic Computing: Computer- und Systemarchitektur im
Jahr 2010. http://www.gi-ev.de/download/VDE-ITG-GI-Positionspapier Or
ganic Computing.pdf (2003)
et al., W.T.: AMUN - An Autonomic Middleware for the Smart Doorplate Project.
In: UbiSys '04 - System Support for Ubiquitous Computing Workshop, Notting
ham, England (2004)

94 Wolfgang Trumler, Tobias Thiemann, and Theo Ungerer

4. Trumler, W., Bagci, F., Petzold, J., Ungerer, T.: Smart Doorplate. Personal and
Ubiquitous Computing 7 (2003) 221-226

5. Silbernagl, S., Despopoulos, A.: Taschenatlas der Physiologie. Georg Thieme
Verlag und Deutscher Taschenbuch Verlag, Stuttgart (2001)

6. Trepel, M.: Neuroanatomie Struktur und Funktion. Urban und Fischer Verlag,
Miinchen,Jena (1999)

7. et al., F.H.: Biochemie des Menschen. Georg Thieme Verlag, Stuttgart (2002)
8. Turing, A.M.: The chemical basis of morphogenesis. In: Philosophical Trans, of

the Royal Society of London, Volume 237 of Series B, Biological Sciences. (1952)
37-72

9. Witkin, A., Kass, M.: Reaction-diffusion textures. Computer Graphics 25 (1991)
299-308

10. Shen, W.M., Will, P., Galstyan, A., Chuong, CM.: Hormone-inspired self-
organization and distributed control of robotic swarms. Autonomous Robots 17
(2004) 93-105

11. et al., M.J.: A modular paradigm for building self-organizing peer-to-peer ap
plications. In: Engineering Self-Organising Systems. Lecture Notes in Artificial
Intelligence (2004) 265-282

12. et al., F.D.: Self-organization in sensor networks using bio-inspired mechanisms.
In: ARCS'05: Workshop Self-Organization and Emergence. (2005) 139-144

A Biologically Motivated Computational
Architecture Inspired in the Human

Immunological System to Quantify Abnormal
Behaviors to Detect Presence of Intruders

Omar U. Florez-Choque^ and Ernesto Cuadros-Vargas^^

^ Computer Science Department, National University of San Agustm. Arequipa,
Peru. omarflorezl9Sgmail.com
^ San Pablo Catholic University

^ Peruvian Computer Society ecuadrosSspc.org.pe

Abstract . In this article is presented a detection model of intruders
by using an architecture based in agents that imitates the principal as
pects of the Immunological System, such as detection and elimination
of antigens in the human body. This model is based on the hypothe
sis of an intruder which is a strange element in the system, whereby
can exist mechanisms able to detect their presence. We will use recog
nizer agents of intruders (Lymphocytes-B) for such goal and macrophage
agents (Lymphocytes-T) for alerting and reacting actions.
The core of the system is based in recognizing abnormal patterns of
conduct by agents (Lymphocytes-B), which will recognize anomalies in
the behavior of the user, through a catalogue of Metrics that will allow
us quantify the conduct of the user according to measures of behaviors
and then we will apply Statistic and Data Minig technics to classify the
conducts of the user in intruder or normal behavior. Our experiments
suggest that both methods are complementary for this purpose. This
approach was very flexible and customized in the practice for the needs
of any particular system.

1 Introduction

Although the passwords, iris and retina readers as well as the digital signatures
work well, a serious problem exists when these controls are overcome by stealing
of the password, modification of the firmware or by stealing of the user's smart
card. For intruders that masqueraded as valid users enter in the system and
they carry out diverse actions that put in risk the integrity of the system [1].
Then, it arises the need of detecting those intruders, by knowing they have a
different behavior pattern from the true user, with the result that it firstly is
necessary to define a mechanism that allows us to measure each behavior of the
user, so when comparing behaviors we will find a numeric value that allows to
differ them.

Please use the following format when citing this chapter:

Florez-Choque, O.U., Cuadros-Vargas, E., 2006, in IFIP International Federation for Information Processing, Volume 216,
Biologically Inspired Cooperative Computing, eds. Pan, Y, Rammig, F., Schmeck, H., Solar, M., (Boston; Springer), pp.
95-106,

96 Omar U. Florez-Choque and Ernesto Cuadros-Vargas

In that sense it is admirable the way Hke the Immunologic System works.
The Immunologic System is an important defensive system that has evolved in
the vertebrate beings to protect them of microorganisms invaders (bacterias,
virus, so on). In the moment when a wound appears, the white globules detect
an antigen (intruder) in the human body through the sanguine torrent. Then
appear two types of Lymphocytes among other agents, the Lymphocyte-B and
the Lymphocyte-T. The Lymphocytes-B recognizes the antigen through proteins
of complement (18 proteins that exist in the plasm and that are activated in a
sequential way) and then these Lymphocytes produce Antibodies that can be
able to face the identified intruding agent. The Lyrnphocyte-T is responsible for
reactive functions destroying the strange substance, in view of each antibody
is specific for each microorganism, the reaction of the Lymphocyte-T will vary
according to the antigen recognized by the Lymphocytes-B.

It is remarkable the adaptability and the persistence of the information in
the human body, since the white globules remember biochemically the analyzed
antigen, so future answers will be quicker and more exact.

It is also interesting, and is the aim of this paper, to present the founda
tions of this mechanism of detection and defense against intruders toward a
computational system.

The rest of this paper is organized as follows. In Section 2 is analyzed the
architecture of the presented model by describing the hierarchical relationships
between each one of the agents. In the Section 3 the functions of the used agents
and their analogy with the Lymphocytes of the Human Immunologic System
are described. In the Section 4 we define a catalog of metrics that will allow us
to quantify the behavior of the user based on four behaviors: Effort, Memory,
Trust and Special Requirements. In Section 5 we discuss the model of detection
of intruders based on Statistical and Data Mining methods, which classify the
vectors of behaviors in behaviors belonging to either intruders or normal users.
In the Section 5 and 6 we discuss the obtained results. Section 7 briefly describes
related works and specifies our contribution. And lastly, section 8 provides some
conclusions.

2 Architecture of the model

The architecture is based on agents with different roles: Control-Reaction, Main
tenance and Net, the model also includes databases that are organized in a
distributed way.

According to the Figure 1, the Control-Reaction Agents are distinguished.
They proactively read information of activity, find patterns and trigger alarms
(through Lymphocytes-B) and they perform protection actions (through Lym-
phocytes-T). Besides, they control the use of resources wasted by the users,
monitoring all their actions, in such a way this type of agents identifies profiles
based on the account, resource and action that the user carried out. This type
of agents are Lymphocytes-B and Lymphocytes-T.

A Biologically Motivated Computational Architecture 97

Fig. 1. Architecture of the Model based on agents

Then, we have the Maintenance agents, which create or delete Control-
Reaction agents, and elimate redundant data, besides compression and local
encoding of data is performed by this agent. This agent also maintains the
database, where the profiles of activity and accounts of the users are stored,
receiving the queries formulated by the Control-Reaction agents, execute them
and return the results so that the Control-Reaction agents perform the necessary
actions. There is one agent of this type for each authentication server because
existis a single database inside this type of servers in the system. Lastly, the Net
Agent creates or deletes Maintenance Agents. In view of this agent has a whole
vision of network. It can detect other types of attacks, such as multi-host attack
or Denial for Service (DOS), and besides it can realize the filter of packages on
the net.

We use agents and not neural nets or other technology due to the hetero
geneity presented in the problem: The Lymphocytes-B agents should learn that
actions of the users change in the time and they should adapt their profiles
according to these changes in view of each Function of Behavior is individual
to each user. The Lymphocytes-T agents should learn how to trigger different
security policies (resource denial, account elimination, lockout of account, re
stricted access) according to stored patterns of behavior. And the Net agents
should learn how to recognize abnormal patterns of activity based on present
information in the whole net to recognize multi-host distributed attacks . There
fore, when we use agents, we combine the necessity to use three great actors in
the system.

3 Components of the architecture

3.1 Lymphocyte-B

These agents have the task of monitoring the actions of the user, identifying
of this way the profiles, which store each action that the user carries out at
one time in a certain resource. This information allows us to measure possible
behavior changes in the account of the user and the later detection of an antigen

98 Omar U. Florez-Choque and Ernesto Cuadros-Vargas

in the system. It is possible to measure the behaviors of an user with metrics,
which identify the behavior of the user in the system, according to this method
a group of behaviors will define in a unique way the behavior of the user. Then,
once obtained the vectors of user behaviors that began session, it is possible to
compare the values of those vectors with the Function of Behavior of the user,
and to foresee if there are abrupt variations in the behavior, which would reveal
us an atypical and suspicious behavior, therefore the system will react.

The Lymphocyte-B agent has the particularity of requesting queries to the
database that corresponds to it (there is one database for each authentication
server), for example this agent requests information, creation, upgrading and
elimination of profiles, but not carrying out them, for this, the Lymphocyte-B
agent sends messages to the maintenance agents (wich are in charge of main
taining the database) and receives messages from agent of maintenance with
the datasets of the query performed. In this type of agents, this information is
necessary to be able to differ the behavior value calculated on relation to val
ues of previous behaviors. For example, if the user gMoore@cisco.com usually
uses its account to read information on internet, and then, in other session,
the Lymphocyte-B agent monitors activities with a high usage of CPU due
to compilation activities. It will compare this value with previous behaviors
by formulating queries that will be executed in the database that stores the
profiles and it will detect that this behavior changes is not normal, then the
Lymphocyte-B will send a message to the corresponding agent so that it reacts
because of this anomaly.

This mechanism resembles the recognition of a strange agent in the human
body by the immunological system.

3.2 Lymphocyte-T

This type of agent has the task of reacting when an anomaly appears. Once
detected the anomaly by the Lymphocyte-B agent, the Lymphocytes-T agent
can give a message of alert, to expel the user, lockout the account, refuse an
action to the user or ignore it depending on the case.

This mechanism resembles the reaction of the human body when a strange
agent arises.

3.3 M a i n t e n a n c e Agen t

This agent is the only agent allowed to manipulate the database, which stores
the behavior information of each user. In fact, this agent executes the queries
received from Lymphocyte-B and Lymphocyte-T agents to carry out them and
returns datasets with the result of the query to the agent that requested it. If
all the agents manipulated this database, the information would be outdated,
and not synchronized, besides the traffic of net would be considerably increased
since the use of the cache unit would be null. There is one Maintenance agent
for each authentication server.

A Biologically Motivated Computational Architecture . . . 99

3.4 N e t Agen t

On the other hand, Mauro [2] filters all the packages of the net, so like a sniffer
to read the headers of these packages and to see the executed command and
starting from that to formulate the possible behavior of the user. This method
has the advantage of not overloading the net considerably, however the pres
ence of techniques of encryption could not make it appropiate, anyway, if this
mechanism was implemented, this agent would be whom to implement it.

It is possible to take advantage of the geographic distribution of the system
to achieve intrusion tolerance using the fragmentation-redundancy-scattering
technique [3] by cutting all user sensitive data into fragments which are en
crypted, stored and replicated among all the databases in the authentication
servers. A high level of granularity in the data is obtained in view of several
fragments together are not enough to disclose the information of the user. In
fact, each Lymphocyte-B agent take a local decision to reject an intruder ac
cording changes on behavior which are locally stored, then this local decision is
broadcasted to the other Lymphocytes-B agents and all the decisions, included
the local decision, are locally voted and the rejection is locally trigged or not.
This technique is called majority voting and ensures that false alarms can not
be trigged.

4 The Vector of Behavior

If we want to transfer the mechanism of recognition of antigens, carried out by
the Lymphocyte-B, by means of complement proteins toward a computational
system we will need another mechanism that allows us to differ the intruders
quantitatively since an user is a strange agent. In this article we propose a
catalog of metrics that enables us to compare different user accounts indepen
dently of the operating system, programming language or implementation done,
because they are based on changes of their behaviors.

Four behaviors of user can be identified in this discussion: Effort, Memory,
Trust and Special Requirements. Each behavior reflects a great part of the way
of behaving of the user into the system, for instance there will be user with
great amount of work, user with low capacity of memory and users with special
requierements like low display resolutions. Each aspects reflect a behavior of
the user. This behavior is dynamic because it changea in the time. Therefore
the total user behavior would be composed by a vector of behaviors, where each
dimension of the vector is associated with a specific behavior.

Once we have all the dimensions from calculated behaviors, the value of
behavior vector can be represented by a measure of distance to quantify the di
vergence among behaviors. Well known distances are Euclidean, Euclidean nor
malized, metric of Tchebycheff, Mahalanobis, and Tonimoto. We choose Euclid
ean distance because it exhibits some very interesting properties: it is variant
to scale change and it depends on the relationships among the variables.

100 Omar U. Florez-Choque and Ernesto Cuadros-Vargas

4.1 Behaviors

Effort This behavior reflects the quantity of work performed by an user, for
example a high value of this behavior would mean that the user is using too
much CPU time, maybe compiling a program, which in the worst case can be
a Troyan Horse or a port scanner. Besides the user can be writing too much
data on the hard disk, in the worst case it can reveal the presence of a virus in
the System, on the other hand, if the user is producing plenty net traffic, it can
reveal a typical DoS attack. Therefore, these aspects identify the quantity of
effort of an user in the system. We show four metrics, which allow us to quantify
this behavior:

CPU time
session 1. consumptionCPU =

2. readWriteDisk = fO'ytesR/Windisk
session

^ i-'rn f f'tflKF^i Kbytes of data transferred in the net
•I -f session

4. durationsesion = Duration of the session

Applying the Euclidean distance, the coefficients of the behavior of Effort
are defined as:

Effort = V consumptionCPU-^ + readWriteDisk^ + trafficNet^ + durationSesion^ (1)

A considerable variation in the value of this behavior would involve that
an user carries out activities that before he did not make which can be due to
changes of departments, promotions in the work or the presence of an intruder
masqueraded in the account. The system would detect this as an abnormal
behavior for the user. A high value of this coefficient will also mean a great
quantity of work carried out in the account of the user.

Memory This behavior reflects the amount of mistakes of the user due to
the forgetfulness that he can experience, for instance the forgetfulness of the
password, most of true users remember the password very well and they enter to
the account in the first intent, however we should also consider elder users and,
worse even, users with dyslexia that are not able to remember with easiness
a password, in any way, this grade of forgetfulness defines an aspect of the
behavior of the user.

We should also consider that when an intruder enters to the system, this
intruder tries firstly to obtain information from the account by means of com
mands of information of the system [1], again, an average user will not need
too much information about itself to begin to work normally. A similar case is
when an user often uses a group of commands, while this user uses more this
group of commands, less errors will happen when writing them, although we
should consider users with low skill in the use of the keyboard and elder users
with Parkinson disease [4].

Therefore we present three metric that qualify this behavior:

A Biologically Motivated Computational Architecture . . . 101

Comvnands written incorrectly
1. wrongCommand session
2. wrong Login = Number of invalidloflins

session
on commands are executed

3. COmmandIn formation = ^ umber of times that in formati^
esston

Applying the Euclidean distance, the coefficients of the behavior of Memory
are defined as:

Memory = y/wrongCommand'^ + wrongLogin^ + commandIn formation^

(2)

Trust This behavior reflects how reliable is an user in the system. There are
users prone to be attacked [1], for example users that elect as password a word
that is in the dictionary, without the use of uppercase, numbers or special
characters; this makes the user to be not very reliable before a brute force
attack. This is a subjective measure and we will say that a password with
uppercase, numbers and special characters has a value of 0, an alphanumeric
password has a value of 3 and a simple password has a value of 10. Then
exist users that for curiosity or with purpose try to read, write or execute files
and for obtaining information that does not correspond them, because they do
not have the enough privileges to make it. Thereby, we can count the number
of invalid accesses to define a feature of the user behavior that indicates if
the user is not very reliable. Finally we can try to measure the fact that an
user hides information through encryption of data. This last metric is relative,
however most of hackers try to hide their fingerprints through encryption, so
that the administrator of security can not examine the information that stores
an account, although this fact is not so serious, however an excessive quantity
of encrypted information is very suspicious.

Therefore, we present three metrics to quantify the trust of the system in a
certain user:

1. invalid Act ions = Number of invalid actions
session

2. complexPassword = Complexity of password.
3. encryptedlnformation = Amount of encrypted information stored in the

account of a user.
Applying the Euclidean distance, the coefficients of the behavior of the Trust

are defined as:

Trust = y invalid Actions'^ + complexPassword'^ + encryptedlnformation^

(3)

Special Requirements This behavior reflects special needs that the user
requires of the system, for example if an user is always connected by modem
and then suddenly carries out a connection by wireless devices, this change
of behavior appears suspicious for the system, then we assign a value of 0 if

102 Omar U. Florez-Choque and Ernesto Cuadros-Vargas

the connection is carried out on intranet, 3 if it is carried out by modem and
10 if it is carried out by wireless connection. It is also necessary to identify
those users that are not authenticated by means of common mechanisms as
their password, but through special devices as iris or retina readers, detection
of faces, digital certificates, touch sensitive screens and so on. Whereby, if in the
authentication process the password is introduced by keyboard, the values of 0
is assigned to this metric. If digital certificates are used, it is assigned a value of
3 and 10 in other cases. However we would keep in mind the possibility that an
user changes the type of authentication, among other reasons the user suffers
some temporary or permanent disability, for example, blindness which prevents
to use iris readers, in this case the administrator would receive many warnings
indicating a suspicious change of behavior. Lastly, we will try to quantify the fact
that the user uses requirements of accessibility to work normally in the system
[4]. Users without superior extremities will have difficulty to use the keyboard,
for this is required a virtual keyboard on the screen, on the other hand users with
astigmatism, myopia or permanent blindness require a magnificator screen, or
a screen reader respectively. Then if an intruder changes these options, clearly
it implies a change in the behavior of the user. This way if the user does not
use any requirement of accessibility, a values of 0 is assigned to this coefficient,
a value of 10 is assigned in other cases.

Then, we present three metrics to try to quantify special necessities of an
user:

1. typeC onnection = Type of connection to the system.
2. typeAuthentication = Type of authentication.
3. reqAccessibility = Requirements of Accessibility.

Applying the Euclidean distance, the coefficients of the behavior of the Trust
are defined as:

Special Requirements — Y typeConnection + typeAuthentication + reqAccessibility (4 j

5 Experimental results

We estimate our results over 200 registers, each register stores a behavior vec
tor. We will use this method 5-fold cross validation to estimate accuracy. The
crossed validation is the standard method to estimate predictions on test data
for Data Mining and Neural Nets [5]. We split the total of registers in 5 groups
of same size. We use 4 groups for the training of the model (Training Set) and
the remaining one for the evaluation of the model(Test Set), then we repeat the
process 5 times leaving-one-out different partition in each cycle as test group.
This procedure gives us a very reliable measure of accuracy of the model. Then
we average the result of these 5 groups to recognize how the model was executed
over the whole data. Then, we will use the ROC curves (Receiver Operating

A Biologically Motivated Computational Architecture . . . 103

Characteristics) to visualize the accuracy in the classification, the ROC curves
are commonly used in the medicine for taking of clinical decisions and in recent
years have been increasingly adopted by the communities of investigators of
Data Mining and Learning Machines [6].

Given a classifier and one group of instances, there are 4 possible states in
which the instance can be classified:

- True Positive (TP).- Intruder that is classified as Intruder by the system.
- True Negative (TN).- Normal User that is classified as Normal User by the

system.
- False Positive (FP).- Normal User that is classified as Intruder by the system.
- False Negative (FN).- Intruder that is classified as Normal User by the system.

We are interested in the rate of Intruders detected by the model {True
Positive) and in the rate of "false alarms" or Normal Users that are classified
as Intruders {False Positive). To build the ROC curves we are interested in the
following metrics:

- The rate of detected intruders; yp+fyv

- The rate of false alarms: jrpl^jv

- The global accuracy: TP+TNVFP+FN

The results of the experiments are summarized in the Table 1.

Table 1. These are the results of classifying the behaviors of the user in the account
gMoore@cisco.com organized by the type of used classifier. In spite of the method
of Deviation Standard had the smallest rate of false alarms and the highest rate in
Detection of Intruders, the method of Decision Trees detected different registers belong
to "true intruders" which had not been detected by the Deviation Standard method.

Classifier

True positive (TP)
True negative (TN)
False positive (FP) (PF)
False negatives (FN)
% Detection of Intruders
% False alarms
% Total accuracy

DeviationDecision
stan
dard
77
73
7
3
96.25 %
4.75 %
93.75 %

trees

68
61
14
7
80.00 %
18.67 %
80.63 %

6 Discussion

Both considered approaches (Standard deviation, Decision trees) works very
well in the detection of intruders, in spite of Decision trees had a lower value

104 Omar U. Florez-Choque and Ernesto Cuadros-Vargas

than Standard deviation, it detected different registers from intruders that those
detected by Standard Deviation. This suggests that both classifiers can be mixed
to define a stable and reliable method to implement intrusion detection schemes.

6.1 Statistic

In the Figure 2, we visualize the accuracy in the detection of intruders through
techniques of Statistic and Data Mining. Both ROC curves are concave therefore
they have a good exchange between detection and false alarms rates.

The classifier based in techniques of Statistic obtained the highest rate of
detection of intruder due to this method is based in more recent behaviors of
the user. Besides it adjusts by itself in the time in a learning way, based in
the tendency of the behavior function in the time. This method also had the
highest global accuracy rate.

I 1
. 1 0 & •

ROC and ROC convex hull curves

•- ' - ROC convex hull Statistic
••*- ROC convex hull Data Mining
o ROC Statistic
-i»- ROC Data Mining

0 1 0,2 0,3 0,4 0,5 0,6 0,7 0,8
Percentage of false positives (false aianns)

Fig. 2. ROC curves for the models of detection of intruders based on Statistical and
Data Mining methods. Notice that curves generated by Deviation Standard have a
higher detection of intruders rate regarding the curves generated by Decision Trees,
although they intersect in a percentage of 92% in the detection of intruders for a
percentage of false alarms of 14%.

6.2 Data Mining

The model of detection of intruder based on decision trees had the higher false
alarm rate. In spite of having 80% in the detection of intruders rate the dif
ference regarding the model based on Deviation Standard was 14%. The two
models intersect in a false alarms rate of 14% with a detection of intruders rate
of up to 90%.

A Biologically Motivated Computational Architecture . . . 105

7 Related works

An alternative approach is taken by Forrest et al. [7], who is focused to de
terminate normal behaviors for privileged process, that is, process that run as
root {sendmail and Ipr). However in this model is difficult to detect an in
truder is masquerading as another user because of this approach is based in
low level features (ports, system calls, processes). Our approach rely on more
meaningful features (Effort, Memory, Trust and Special Requirements), which
identify more exactly the behavior of the user into the system. These features
are inherent to the user, therefore an user can not forget them and a intruder
can not guess them. Besides we tried to emulate an architecture inspired in the
principal functions of the Human Immulogical System through lymphocytes (B
and T).

8 Conclusions

We believe the proposed model provides a base to implement a system capa
ble to recognize intruders according to behaviors of the owner of the account,
in that sense, we believe that an intruder can guess the password of an user,
but difficultly , will be able to guess the behavior of the user. We showed that
the model based on statistical techniques had the higher detection of intruders
rate, 96.25%. Although the model based in techniques of Data Mining had the
higher false alarm rate, 18.67%. Therefore we recommend mix both methods,
these data can help to decide an security administrator to use one of the mod
els or both, according the specific necessity of security. For example in an critic
security environment, is more important to have a high grade of detection of
intruders. On the other hand, in mail servers can be more important the avail
ability of the service, in spite of this service do not be so exact, thereby a rate
of false alarms of 18.67% can be acceptable.

Acknowledgements

The author wants to thank very especially the teachings and advices from the
teachers of the National University of San Agustm at Arequipa Dr. Ernesto
Cuadros-Vargas and Dr. Luis Alfaro Casas. Besides, I would like to express my
deep gratitude to Dr. Rosa Alarcon Choque, University of Chile at Santiago,
for her invaluable encourage.

References

1. K. Mitnick. The Art of Deception. Wiley. December, 2002.
2. A. Mauro. Adaptative Intrusion Detection System using Neural Networks. Con

ference of ACME! Computer Security Labs. November, 2002.

106 Omar U. Florez-Choque and Ernesto Cuadros-Vargas

3. Y. Deswarte, L. Blain, and J. C. Fabre. Intrusion tolerance in distributed com
puting systems. In Proc. Symp. on Research in Security and Privacy, pp. 110-121,
Oaldand, CA, USA. 1991. IEEE Computer Society Press.

4. S. Burgstahler, Sheryl. Working Together: People with Disabilities and Com
puter. University of Washington. DO-IT. 2002.

5. R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and
model selection. IJCAI. 1995.

6. T. Fawcett. ROC graphs : Notes and practical considerations for researchers.
Technical report, HP Laboratories, MS 1143, 1501 Page Mill Road, Palo Alto
CA 94304, USA. 2004.

7. S. Forrest, S. A. Hofmeyr. A. Somayaji, and T. A. Longstaff. A sense of self for
Unix processes. In Proceedings of 1996 IEEE Symposium on Computer Security
and Privacy, pp. 120-128 (1996).

Error Detection Techniques Applicable in an
Architecture Framework and Design Methodology for

Autonomic SoCs*

Abdelmajid Bouajila', Andreas Bemauer^, Andreas Herkersdorf', Wolfgang
Rosenstiel^'^, Oliver Bringmann^, and Walter Stechele'

' Technical University of Munich, Institute for Integrated Systems, Germany
^ University of Tuebingen, Department of Computer Engineering, Germany

^ FZI, Microelectronic System Design, Karlsruhe, Germany

Abstract. This work-in-progress paper surveys error detection techniques for
transient, timing, permanent and logical errors in system-on-chip (SoC) design
and discusses their applicability in the design of monitors for our Autonomic
SoC architecture framework. These monitors will be needed to deliver necessary
signals to achieve fault-tolerance, self-healing and self-calibration in our Auto
nomic SoC architecture. The framework combines the monitors with a well-
tailored design methodology that explores how the Autonomic SoC (ASoC) can
cope with malfunctioning subcomponents.

1 Introduction

CMOS technology evolution leads to ever complex integrated circuits with nanome
ter scale transistor devices and ever lower supply voltages. These devices operate on
ever smaller charges. Therefore, future integrated circuits will become more sensi
tive to statistical manufacturing/environmental variations and external radiation caus
ing so-called soft-errors. Overall, these trends result in a severe reliability challenge
for fiiture ICs that must be tackled in addition to the already well-known complex
ity challenges. The conservative worst case design and test approach will no longer
be feasible and should be replaced by new design methods. Avizienis [1] suggested
integrating biology-inspired concepts into the IC design process as a promising alter
native to today's design flow with the objective to obtain higher reliability while still
meeting area/performance/power requirements. Section 2 of the paper presents an Au
tonomic SoC (ASoC) architecture framework and design method which addresses and
optimizes all of the above mentioned requirements. Section 3 surveys existing error
detection techniques that may be used in our Autonomic SoC. Section 4 discusses im
plications on the ASoC design method and tools before section 5 closes with some
conclusions.

* This work is funded by DFG within the priority program 1183 "Organic Computing"

Please use the foUowing format when citing this chapter:

Bouajila, A., Bemauer, A., Herkersdorf, A., Rosenstiel, W., Bringmann, O., Stechele, W.,2006, in IFIP International
Federation for Information Processing, Volume 216, Biologically Inspired Cooperative Computing, eds. Pan, Y,
Rammig, R, Schmeck, H., Solar, M., (Boston: Springer), pp. 107-113.

108 A. Bouajila, A. Bemauer et al.

SoC Library

Application
Requirements

:s:
Application

Characteristics

^ ^
i Characteristics I

t mctio'inl SoC L^wcr

Reliability Driven
Architectural
Optimization

FE Parameter
Selection

AE Parameter
Selection

3z:

. Penorman^ic

Reiiability
/ -

Power

C
/ /7.^ AjL^ •'••n;or

FE/AE-Model

' ^

Parameter
Evaluation

7T
C _ y / . — /

^ Autonom.c SoC Lavor

Evaluation

Fig. 1. Autonomic SoC design method and architecture [2]

2 Autonomic SoC Architecture and design method

Figure 1 [2] shows the proposed ASoC architecture platform. The ASoC is split into
two logical layers: The functional layer contains the intellectual property (IP) compo
nents or Functional Elements (FEs), e.g. general purpose CPUs and memories, as in a
conventional, non-autonomic design. The autonomic layer consists of interconnected
Autonomic Elements (AEs), which in analogy to the IP library of the functional layer
shall eventually represent an autonomic IP library (AEJib). At this point in time, it is
not known yet whether there will be an AE for each FE, or whether there will be one
AE supporting a class of FEs.

Each AE contains a monitor or observer section, an evaluator and an actuator. The
monitor senses signals or states from the associated FE. The evaluator merges and
processes the locally obtained information originating from other AEs and/or memo
rized knowledge. The actuator executes a possibly necessary action on the local FE.
The combined evaluator and actuator can also be considered as a controller. Hence, our
two-layer Autonomic SoC architecture platform can be viewed as a distributed (de
centralized) observer-controller architecture. AEs and FEs form closed control loops
which can autonomously alter the behavior or availability of resources on the func
tional layer. Control over clock and supply voltage of redundant macros can provision
additional processing performance or replace on-the-fly a faulty macro with a "cool"
stand-by alternative.

Although organic enabling of next generation standard IC and ASIC devices rep
resents a major conceptual shift in IC design, the proposed ASoC platform represents

Error Detection Techniques for ASoC 109

a natural evolution of today's SoCs. In fact, we advocate to reuse cores as they are and
to augment them with corresponding AEs.

In order to study the feasibility of our ASoC framework, we already started looking
in-depth into how to design such SoCs. We adopted a bottom-up approach in which
we design autonomic building blocks and connect them to build an Autonomic SoC.
The ultimate objective is to understand how to form an Autonomic IP library and, thus,
how to design Autonomic SoCs in a systematic and well-established top-down design
flow.

3 Existent CPU concurrent error detection techniques

The human body needs to sense the state of its different organs, e.g. pain or temper
ature, to let the immune system handle the problem or to try to ask for external help,
e.g. medicines [1]. In analogy to the human body, the SoC needs to detect errors for
example to allow a CPU to re-execute an instruction or to ask for a replacement CPU.

There are three main concurrent error detection techniques: hardware redundancy,
information redundancy and time redundancy. In our survey, the efficiency of each
technique is measured by 1) how many different types of errors can be detected (so
we need to define a fault model and then to evaluate the fault coverage), 2) how much
overhead (in terms of area, performance and power) the concurrent error detection
technique induces, and 3) how feasible IP-reuse is, i.e. is it possible to achieve error
detection in an already existent CPU by adding a separate monitor?

In [3], an (extended) fault model classification is presented. In fault-tolerant inte
grated circuits literature, faults are usually classified as permanent [4,5], timing [6],
transient [7] or design (logic) errors. The most widely used fault model is the single
error fault, in which different errors don't occur simultaneously. The fault coverage [3]
of a detection technique is given for a specific fault model. Fault coverage is either
given by analytical (formal) methods or by simulation.

A. Hardware redundancy techniques: Hardware redundancy has good fault cover
age (transient, timing and permanent errors). However, the area and power overheads
are big. In the particular case of duplication, the monitor will be the duplicated circuit
and the comparator. In spite of its big overheads, we could use this technique in our
ASoC project because the percentage of logic parts in modem SoCs is less than 20%.

B. Information redundancy techniques: There are two different approaches us
ing information redundancy. The first approach synthesizes HDL descriptions [4] to
generate so-called path fault-secure circuits. The second approach tries to build self-
checking arithmetic operators to achieve the fault-secure property [5]. The main draw
back of the first approach towards our ASoC framework is the difficulty in separating
between the fiinctional and autonomic layers. Self-checking designs give fault-secure
arithmetic operators for stuck-at faults (permanent faults) with low area overhead but
their use requires redesigning existing IP-libraries.

C. Time redundancy technique: The time redundancy technique was proposed to
detect transient errors. Transient errors can be modeled by SEU (Single Event Upset)
and SET (Single Event Transient) [8].

110 A. Bouajila, A. Bemauer et al.

Combinational
Circuit

Clc+6

Out

,

Latch 1

|Clc

Output
Latcli

Comparator E.l,

Fig. 2. Time redundancy technique [7]

The idea of Nicolaidis [7] is to benefit fi'om the fact that a transient error will occur
only for a short duration. Hence, if we sample a primary output at two successive
instants separated by a duration larger than that of the SET pulse, we will be able—in
theory—to detect all SETs. Figure 2 presents this scheme.

Simulations [9] on adders and multipliers showed that this scheme detects around
99% of SETs (an SET can escape from detection because of reconvergent paths). It
also detects SEUs and timing errors. The area overhead depends on the circuit area
per output parameter. Razor, a similar time redundancy technique for detection and
correction of timing errors was suggested in [6].

These time redundancy techniques are very interesting for our ASoC framework
and could be integrated in a systematic way to protect circuits against transient and
timing errors. Also, the separation between the functional and autonomic layer is quite
simple; for instance the monitor for Nicolaidis scheme (Fig. 2) will include the extra
latch and the comparator.

D. Combination of Hardware and Time Redundancy: The Dynamic Implementa
tion Verification Architecture (DIVA) [10] incorporates a concurrent error detection
technique to protect CPUs. We can classify it either as a time redundancy and/or a
hardware redundancy technique. The baseline DIVA architecture (Fig. 3a) consists
of a (complex) processor without its commit stage (called DIVA core) followed by
a checker processor (which consists of CHKcomp and CHKcomm pipelines, called
DIVA checker) and the commit stage.

The DIVA checker checks every instruction by investigating in parallel (Fig. 3 a)
the operands (re-reading them)and the computation by re-executing the instruction. In
case of an error, the DIVA checker, which is assumed to be simple and reliable, will fix
the instruction, flush the DIVA core and restart it at the next program counter location.
Physical implementation of a DIVA checker has an overhead of about 6% for area and
5% for power [11].

We believe that in very deep sub-micron technologies a checker which is reliable
enough is difficult to achieve and could also result in a large area overhead. We suggest
a modified version of DIVA in which both the DIVA core and checker re-execute an
errant instruction, so that the checker no longer needs to be reliable.

The modified DIVA (Fig. 3 b) only checks the CPU computation and protects the
DIVA core/memory interface and the register file with error correcting codes (ECC).
Therefore, the DIVA checker no longer needs to access the register file and data cache,
eliminating structural hazards between the DIVA core and checker. The fault coverage
of both DIVA versions includes transient, timing, permanent and logic errors. In both
DIVA versions, it is mandatory that the error rate is bounded not to decrease perfor-

Error Detection Techniques for ASoC

CHKcomp pipeline

111

speculative
computation
from DIVA
source

suit

suit

srcl,src2>

<inst,result>

srcl,src£>

E

X'

B

D

C

c
H

K

^^^^^<siiccess?>

^ <success?>

C
T

CHKcomm pipeline (a)

speculative
computation
from DIVA
source

suit srcl,src2>

<in3t,result>

E

X'

c
M

P

—^<success?>

C
T

(b)

Fig. 3. DIVA architecture, (a) Baseline DIVA architecture [10], (b) Modified DIVA architecture

mance. DIVA cannot be inserted in a systematic way to protect existent CPUs because
there are no standards in designing CPUs. Hence, a designer should study the CPU ar
chitecture and implementation and then separate the commit stage to be able to insert
the DIVA checker. Nevertheless, we should mention that the separation between the
functional layer and the autonomic layer is clear (the DIVA checker is the monitor).
Also, DIVA enables us to re-use existent CPUs by identifying their commit stage.

We decided to use the modified version of DIVA to build autonomic CPUs because
it allows us to separate ftinctional and autonomic layers, permits IP-reuse and has the
best fault coverage when compared to other detection techniques: it detects transient,
timing, permanent and logic errors with a fault coverage close to 100%. The draw
backs of the other techniques are either big overheads (duplication, path fault-secure
circuits), limited fault coverage (transient and timing-error detection oriented tech
niques (Nicolaidis and Razor), or restrictions to just stuck-at detection (Self-checking
designs)).

4 Design Methodology and architecture for ASoC

A successful design of Autonomic SoCs needs a well-tailored design methodology that
explores the effect of the AEs to cope with malfunctioning subcomponents. Our ASoC
design methodology (Fig. I) follows the established platform-based design approach,
where a predefined platform consisting of a set of architectural templates is optimized
for a given application with respect to several design constraints like area, performance
and power consumption. In the context of this paper, the traditional process is extended
by adding the autonomic layer to the platform model and considering reliability as
an additional parameter. Therefore, the evaluation process now has to deal with the
effects of the AEs—which include algorithms to support self-optimization—as well as

112 A. Bouajila, A. Bemauer et al.

with the AEs' relationship to system reliability. The evaluation process results in an
optimized set of FE/AE parameters including provision of an a priori knov^fledge for
the evaluators at the autonomic layer.

The design methodology will decide where and how many of the aforementioned
error detection units the ASoC will need to meet the application's reliability require
ments. The error detection units will be part of the AEJib.

As the resulting ASoC will be able to change parts of its design during run time it
will need design time information. In particular, the ASoC will need a priori knowl
edge about the application's behavior when an error occurs and, more importantly,
about how the system has to self-modify to handle the error. The design methodology
will gather this knowledge by injecting errors according to the error model into the
application and architecture model and analyzing the consequences. The knowledge
will be implemented distributed over the AEs in a self-organizing algorithm.

However, it won't be feasible to explore for all possible combinations of errors.
For the explored error situations the self-organizing algorithm can react as given by
the a priori knowledge. For the unexplored error situations it must be able to derive
applicable measures but still meet the application constraints like temperature, timing
and power consumption. The XCS classifier system presented by Wilson et al. [12] is
capable to do this.

Registers attached to the error detection units will count the detected and corrected
errors within a sliding time interval. When the counter exceeds some threshold, the
self-organizing algorithm will take the necessary measures to correct for the error.
It is also possible to provide a way to make the reliability information accessible to
the application. With this, not only the hardware but also the application can adapt
to varying reliabilities of some components, e.g. by rescheduling tasks to some more
reliable CPU.

5 Conclusions and Outlook

This paper presented an Autonomic SoC architecture framework and design method.
We are going to build an Autonomic CPU based on the LEON processor [13]. This
will help us to evaluate the design effort, overheads and the gain of reliability achieved
by our method. Later, we will build autonomic memory and autonomic interconnect;
the ultimate objective is to get an ASoC architecture and design method integrating
biology-inspired concepts.

References

1. A, Avizienis, Toward Systematic Design of Fault-Tolerant Systems, IEEE Computer 30(4),
51-58 (1997).

2. G. Lipsa, A. Herkersdorf, W. Rosenstiel, O. Bringmann and W. Stechele, Towards a Frame
work and a Design Methodology for Autonomic SoC, in: 2nd ICAC (2005).

Error Detection Techniques for ASoC 113

3. A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr, Basic Concepts and Taxonomy of
Dependable and Secure Computing, IEEE Trans, on Dependable and Secure Computing
1(1) (2004).

4. N. Touba and E. McCluskey, Logic Synthesis of Multilevel Circuits with Concurrent Error
Detection,/£•£•£• Trans. CAD 16(7), 783-789 (1997),

5. M. Nicolaidis, Efficient Implementations of Self-Checking Adders and ALUs, in: Proc.
23rd Intl. Symp. Fault-Tolerant Computing, pp. 586-595 (1993).

6. D. Ernst, N. S. Kim, S. Das, S. Pant, T. Pham, R. Rao, C. Ziesler, D. Blaauw, T. Austin,
T. Mudge and K. Flautner, Razor: A Low-Power Pipeline Based on Circuit-Level Timing
Speculation, in: Proc. 36th Intl. Symp. Microarch., pp. 7-18 (2003).

7. M. Nicolaidis, Time Redundancy Based Soft-Error Tolerance to Rescue Nanometer Tech
nologies, in: Proc. 17th IEEE VLSI Test Symposium, pp. 86-94 (1999).

8. S. Mitra, N. Seifert, M. Zhang, Q. Shi and K. S. Kim, Robust System Design with Built-in
Soft-Error Resilience, IEEE Computer 38(2), 43-52 (2005).

9. L. Anghel and M. Nicolaidis, Cost Reduction and Evaluation of a Temporary Faults Detect
ing Technique, in: Proc. DATE, pp. 591-598 (2000).

10. T. M. Austin, DIVA: A Dynamic Approach to Microprocessor Design, Journal of
Instruction-Level Parallelism 2, 1-6 (2000).

11. C. Weaver and T. Austin, A Fault Tolerant Approach to Microprocessor Design, in: Proc.
Intl. Conf Dependable Systems and Networks, pp. 411-420 (2001).

12. S. W. Wilson, Classifier Fitness Based on Accuracy, Evolutionary Computation 3(2), 149-
175 (1995).

13. LEON VHDL code is available atwww.gaisler.com.

A Reconfigurable Ethernet Switch for Self-
Optimizing Communication Systems

Bjom Griese and Mario Porrmann
Heinz Nixdorf Institute and Institute of Electrical Engineering and

Information Technology
University of Paderbom, Germany
{bgriese, porrmann}@hni.upb.de

Abstract. Self-optimization is a promising approach to cope with the
increasing complexity of today's automation networks. The high complexity is
mainly caused by a rising amount of network nodes and increasing real-time
requirements. Dynamic hardware reconfiguration is a key technology for self-
optimizing systems, enabling, e.g., Real-Time Communication Systems
(RCOS) that adapt to varying requirements at runtime. Concerning dynamic
reconfiguration of an RCOS, an important requirement is to maintain
connections and to support time-constrained communication during reconfigu
ration. We have developed a dynamically reconfigurable Ethernet switch,
which is the main building block of a prototypic implementation of an RCOS
network node. Three methods for reconfiguring the Ethernet switch without
packet loss are presented. A prototypical implementation of one method is
described and analyzed in respect to performance and resource efficiency.

1 Introduction

A prerequisite for the realization of self-optimizing systems is the availability of a
hardware infrastructure that is able to adapt to changing application demands at
runtime. Traditionally, embedded real-time systems have been designed in a static
manner for pre-assigned hardware platforms [1]. The hardware in these systems is
fixed and flexibility is only provided by software. In contrast to this we use
dynamically reconfigurable hardware, which offers an additional degree of fiexibility
due to its ability to change the hardware structure at runtime [2]. In the context of
dynamically reconfigurable real-time systems [3] new methods have to be developed
to meet the real-time requirements in particular during the reconfiguration process.

This work was developed in the course of the Collaborative Research Center 614 - Self-
optimizing Concepts and Structures in Mechanical Engineering - University of Paderbom,
and was published on its behalf and fiinded by the Deutsche Forschungsgemeinschafl.

Please me the following format when citing this chapter:

Griese, B., Porrmann, M., 2006, in IFIP International Federation for Information Processing, Volume 216, Biologically

Inspired Cooperative Computing, eds. Pan, Y, Rammig, E, Schmeck, H., Solar, M., (Boston; Springer), pp. 115-124.

116 Bjom Griese and Mario Porrmann

In this paper we introduce reconfiguration methods for a Real-Time
Communication System (RCOS). Our aim is to develop an RCOS for self-optimizing
mechatronic systems that efficiently uses the available hardware resources. Self-
optimizing systems are able to adapt automatically to dynamically changing
environments and user requirements. For an efficient use of the resources, the tasks
that control the actors and observe the sensors are distributed to appropriate
computing nodes of the system. As a consequence, the real-time requirements and
the communication requirements vary as the distribution of tasks changes in the
considered mechatronic systems. In order to enable the adaptation to changing
environments reconfiguration from the application level down to the hardware level
is a required key technology.

The basis of our RCOS is formed by network nodes that allow setting up line and
ring topologies. Each node consists of at least two network interfaces that connect
the node to its neighbors and to an embedded processor. In order to be able to adapt
the network nodes to changes in protocols and interface requirements, which can not
be foreseen, we use an FPGA for the implementation of the network interfaces. The
architecture of the reconfigurable RCOS network node is shown in Fig. 1.

The RCOS node handles two different types of data streams: data originated
from or terminated at the processor and streams that are simply passed through. If
network traffic is rather small or if real-time requirements are low or even
nonexistent, comparatively simple network interfaces are sufficient, which occupy
only a few resources. In this case, data packets are forwarded from one port to
another by a software implementation on the embedded processor. This causes a high
load for the processor, the internal bus and the memory while the FPGA resources
can be utilized by other applications. If the software implementation is not able to
deliver the required performance, e.g., due to increasing bandwidth or real-time
requirements, the two separate interfaces are substituted by a single integrated
hardware switch during runtime. This switch is able to forward data packets
autonomously and, as a consequence, manages a much higher amount of traffic.
However, the structure of this switch is more complex and requires additional FPGA
resources, which are no longer available for other applications.

The idea to use reconfigurable logic for the integration of network applications
into the network interface has been realized, e.g., by Underwood et al. [4].
Comparable network interfaces have been used for server and network applications,
e.g., web servers, firewalls [5], and virus protection [6]. If the RCOS is implemented
in an FPGA, packets that are stored in the active switch implementation may be lost
if the switch is overwritten with a new one. Real-time requirements can only be
supported if no packet loss is caused by the reconfiguration process. Therefore, three
methods for the reconfiguration of RCOS network nodes without packet loss will be
introduced in Section 2. Prerequisites for these methods are a packet based
communication protocol and the possibility to implement both the software switch
and the hardware switch simultaneously on the FPGA during reconfiguration. The
RCOS network node is prototypically implemented by a dual-port Ethernet switch.
Switched Ethernet technology is commonly used in real-time communication
networks in the area of industrial automation, e. g.. Industrial Ethernet [7] and
PROFINET [8].

A Reconfigurable Ethernet Switch for Self-Optimizing Communication Systems 117

Sensors, Actuators

Processor

v-v

i
reconfigurable

Interface/Application ^ j — /
Hardware

Reconfiguration
Controller

reconfigurable Network Interface

Port 1 Port 2

Fig. 1. RCOS network node

A prototypical implementation of our switch has been realized with our
RAPTOR2000 System, a Rapid Prototyping System developed at the System and
Circuit Technology research group at the University of Paderbom [9]. Xilinx Virtex-
II Pro FPGAs are used, which comprise two embedded PowerPC processors in
addition to fine-grained reconfigurable hardware resources. The Ethernet switch is
implemented either in software or in hardware, as detailed in Section 3. For the
prototypical implementation, the reconfiguration is triggered by the network load,
which is continuously measured.

2 Strategies for Reconfiguration

The basic principles of dynamic reconfiguration of network interfaces without packet
loss have been presented in [4], Based on this theoretical approach, we present three
reconfiguration methods and analyze their practical relevance. To avoid packet loss
for all of the three alternatives, both the software switch and the hardware switch
have to be active during reconfiguration in order to maintain connections to
neighboring nodes. Furthermore, the transmit and receive processes have to be
switched separately. As depicted in Fig. 2 the access to the shared Media
Independent Interface (Mil) is controlled by a hardware multiplexer. If currently no
Ethernet packet is received the hardware switch is allowed to switch over the ports
from one switch to the other switch. Hence, we use the Inter-Frame Gap (IFG) of the
Ethernet protocol to hand over interface control.

In our first approach, the hardware multiplexer immediately switches the signals
of the receive process to the "new" configuration if the reconfiguration is started
within an IFG. Subsequently, received Ethernet packets are written into the receive
buffers of the "new" configuration. Ethernet packets, which are still in the "old"
configuration, must be copied to the transmit buffers in the "new" configuration to
terminate the reconfiguration of the receive process.

118 Bjom Griese and Mario Porrmann

js: MAC
(Queue 1)

Tx

Processor

XT
System Bus

MAC
(Queue 2)

Tx

t
Hardvrare Multiplexer \ TX_I / \ RX_I

Media Indepeivlent i i

Memory

Interface

IX Hardware-Switch
Queue 1 Queue 2

Tx

R>̂ -2 /

Y Y~
Port 1 Port 2

Fig. 2. Architecture of the reconfigurable switch

The transmit process of the "old" reconfiguration transmits all Ethernet packets
residing in the send buffer before the hardware multiplexer can switch over the
transmit signals. Due to the Ethernet standard, the transmit process has to keep a
minimal IFG between two packets, even during the reconfiguration process.
Therefore, the duration of a minimal IFG must elapse since the last transmission of a
packet, before the signals are switched to the "new" configuration.

A rearrangement of the packet sequence can occur, if the hardware switch
forwards a "new" packet before the copy operation from the software switch is
finished. But the benefit of this method is a fast activation of packet forwarding by
the hardware switch. Hence, no buffer overflow can occur during reconfiguration.

An alternative reconfiguration method is to forward the packets stored in the
receive buffer of the "old" configuration to the transmit buffer of the "old"
configuration by software. New arriving packets are directed to the hardware switch.
The hardware multiplexer switches the transmit signals only when both the receive
buffers and the transmit buffers become empty. Concerning the reconfiguration
speed, this method is equal to the method described above, because only the write
destination has changed. This method has a drawback if the processor is not able to
forward all packets with the maximum data rate. The switching of the transmit
signals to the "new" configuration is delayed by the copy operation. In this case, the
hardware switch is not able to forward new arriving packets, because the transmit
signals are still blocked. The risk of a buffer overflow in the hardware switch is
present. Larger receive buffers can compensate for this risk. The advantage of this
method is that no rearrangement of the packet sequence can occur. As a third
alternative, the transmit signals can be switched immediately to the "new"
configuration. Therefore, the processor move the content of the transmit buffer of the
software switch to the transmit buffer of the hardware switch. This method allows a

A Reconfigurable Ethernet Switch for Self-Optimizing Communication Systems 119

fast activation of the transmit process of the "new" configuration. The processor has
to verify if receive and transmit buffers are empty. If necessary, the processor copies
the packets to the corresponding transmit buffers, requiring additional processing
time. The processor has to flush the transmit buffers first, to avoid a rearrangement
of the packet sequence. In contrast to the second method that has been described, a
rearrangement during the reconfiguration process is possible in this approach. Using
this method, no status information must be given to the hardware multiplexer, e.g.,
no information about the receive and transmit buffer status is required. As described
above, the reconfiguration process is finished when the reconfiguration of both
receive and transmit processes is accomplished. Maintaining the original packet
sequence cannot be guaranteed with the first and with the last presented
reconfiguration method. This does not mean that the second method is the only
possible solution, but the other methods require packet numbering and reordering
functions. The first method allows for a fast activation of the hardware switch, but a
rearrangement of the packet sequence is possible. The second method avoids a
rearrangement of the packet sequence, but the reconfiguration process is delayed by
the copy operations. The third method can be used if no status information of the
MACs (Media Access Controller) is available. In this case, the processor is
responsible for redirecting the remaining packets, thus decreasing the reconfiguration
speed. In our prototypical implementation we used the first method to demonstrate a
reconfiguration without packet loss. Due to performance issues of the embedded
processor, and in order to achieve a minimum buffer size, our application requires a
fast activation of the hardware switch.

3 Implementation of a dynamically reconfigurable Ethernet
switch

The dynamically reconfigurable Ethernet switch consists of a software switch and a
hardware switch. The software switch comprises two Ethernet Media Access
Controllers that are connected to the system bus of the SoPC. For each port of the
switch, one Ethernet MAC is required. The switching decision is made by the
processor. I.e., the processor checks the destination address field of the Ethernet
packets and copies the data from the receive buffer into the transmit buffer, if the
packet has to be forwarded to another Ethernet port. The whole Ethernet traffic is
transferred via the system bus. The hardware switch has the same capabilities as the
Ethernet MACs. In contrast to the software switch, the switching decision is carried
out in hardware. Therefore, the processor and the system bus are released from
performing network infrastructure tasks.

For being able to implement the proposed RCOS we have developed an Ethernet
MAC for Xilinx FPGA, which supports dynamic reconfiguration without packet
loss. Therefore, the Ethernet MAC has to generate status information for the
processor (e.g., network load and buffer state). In order to maintain the IFG between
two Ethernet packets during the reconfiguration process, the transmit process has to
be suspended. Additionally, packets already queued in the Ethernet MAC have to be

120 Bjom Griese and Mario Porrmarm

prevented from being transmitted before the multiplexer has switched the transmit
signals to the Ethernet port.

In addition to a software implementation of the Ethernet-switch, a hardware
switch has been implemented, which relieves the processor of network infrastructure
tasks. In order to avoid the transmission of corrupt packets, the hardware switch uses
the store-and-forward switching method. It consists of two independent cross-
connected sub-switches, which are connected to the system bus. One sub-switch
component is able to forward packets in one direction. The sub-switch component is
an extension of the Ethernet MACs presented before. It integrates an additional
buffer for receiving and forwarding the packets that are not destined for the
processor. Because of the hierarchical structure of our switch, the Ethernet software
driver for both the software switch and the hardware switch are the same. For a
reconfiguration of the switch no adaptation of application software is necessary.

Reconfiguration Options
To cope with the real-time requirements, the reconfigurable switch is able to collect
information that is relevant for quality of service managment. Based on this
information the Ethernet switch can be reconfigured. One of the measured
parameters is the network load, which is determined by the MACs in our hardware
implementation. The length of an Ethernet packet varies between 72 Bytes and 1526
Byte (8 Byte Preamble and Start-of-Frame-Delimiter included). But the
measurement of the network load should not depend on the packet size, as far as
possible. This can be achieved by measuring the time the data-valid signal (RX_DV)
of the Mil interface is active in a predefined interval, because RX_DV determines
the beginning and the end of an Ethernet packet. Thus, the network load is calculated
according to equation (1).

L is the network load in percent, where 100 % network load corresponds to the
maximum data rate. The factor K represents the number of IFGs, occurring in the
measurement interval T. IFG„i„ represents the minimal IFG (0,96 ^s for 100 MBit/s)
of the applied Ethernet protocol. RXactive is the time, in which the RX_DV signal is
set. This way of measuring the network load is independent on the packet size. In our
prototypical implementation the reconfiguration from the software switch to the
hardware switch is started if the network load exceeds 20 %.

Another possibility to maintain the real-time requirements is to reconfigure the
Ethernet switch depending on the buffer state. Therefore, an impending buffer
overflow is signaled to the processor by the MAC. In this case, the processor initiates
a reconfiguration from the software to the hardware switch. Because the buffer is
able to save further incoming packets during the reconfiguration process, packet loss
is avoided if the reconfiguration is fast enough.

A Reconfigurable Ethernet Switch for Self-Optimizing Communication Systems 121

NodeA NodeB NodeC

Fig. 3. Demand for low latency

A third alternative to optimize the efficiency of the communication system is to
adapt the forwarding latency caused by the switch. Fig. 3 shows a typical situation in
an RCOS. Node A, B and C are connected in a line topology. If Node A demands for
a low latency to Node C, Node A sends a message to Node B. Node B initiates its
reconfiguration and is now able to offer low forwarding latency. While the first two
approaches that have been described above perform their optimizations based on
local information, the third approach enables a self-optimization of distributed
systems based on an interaction of the network nodes.

4 Performance evaluation

The latency of both switch configurations has been analyzed by means of a
measurement circuit integrated in the switch implementation together with a network
load generator. The network load generator has been configured to send packets with
varying packet length to evaluate the correlation between packet size and latency.
The values for the packet size given in this paper are related to the data field of the
Ethernet protocol. The complete packet size can be calculated by adding 26 Bytes for
the Ethernet header.

cS> _rS> _rS> r?> .cS> _cS> f S fX) (^ ^ ^K) 5S
&* <i° KĈ N.N° <!? <!p

Packet Size (Byte)

Fig. 4. Measured latency of the software switch and of the hardware switch

122 Bjom Griese and Mario Porrmann

Because both the hardware switch and the software switch are store-and-forward
implementations, the latency of both switches linearly depends on the packet size, as
shown in Fig. 4. But the gradient of the latency of the software switch is 3.92 times
higher than the gradient of the latency of the hardware switch. The main reason for
the higher gradient is that the processor copies the Ethernet packets from one MAC
to memory and from memory to the other MAC in the software implementation. The
perturbation in the linearity of the latency graph is caused by processor operations
that require a variable number of clock cycles, e.g., due to fetching instructions from
external memory or from the instruction cache. Because of the high latencies, the
software switch achieves in the worst case (i.e., for minimum packet size) a
maximum data rate of 18 MBit/s, i.e., no packet is lost up to this data rate.

In contrast to the software switch the hardware switch supports the full data rate
of Fast Ethernet (100 Mbit/s). In this implementation the perturbation in the latency
graph is due to the integrated hardware monitor, which observes two buffers
sequentially: one buffer for the processor queue and one for packet forwarding. If the
hardware switch observes the buffer of the processor while a packet is "ready" to be
forwarded, the latency increases by one clock cycle.

The easiest way to dynamically reconfigure from the software switch to the
hardware switch is just to overwrite the first switch with the second one. Obviously,
during reconfiguration no packets can be forwarded in this case. Reconfiguring the
FPGA for exchanging the switches takes about 10 ms. During this reconfiguration
period no communication via the switch is passible. In the worst case this results in a
loss of more than 1400 packets. This problem can be solved by using both switches
in parallel and by managing the reconfiguration with one of the three proposed
methods.

Start of
reconfiguration

End of
reconfiguration

RX_DV-

TX EN 2 -

irnr 1

TJTYT
73,8 JJS—

1
Fig. 5. Illustration of the packet flow during reconfiguration

For testing the proposed approach that uses both switches in parallel during
reconfiguration, the reconfiguration has been initiated by forcing an impending
buffer overflow in order to verify a lossless reconfiguration. In this scenario, the
reconfiguration is initiated if two packets reside in the receive buffer. Five packets
with a size of 100 Bytes were sent to the switch, as shown in Fig. 5. The RXDV
signal indicates incoming packets; the TX_EN_2 signal indicates the outgoing
packets. The first marker Fig. 5 represents the start and the second marker the end of
the reconfiguration process. We have measured a time of 73.8 us for the
reconfiguration process (i.e., the time between marker one and two). In this time 7
packets can reach the switch and have to be buffered or have to be forwarded.

A Reconfigurable Ethernet Switch for Self-Optimizing Communication Systems 123

Because at least one switch is always active, no packets are lost during
reconfiguration.

Table 1 shows the resource utilization of the software switch, of the hardware
switch and of both the hardware switch and the software switch during the
reconfiguration process on the Virtex-II-Pro-20 FPGA in terms of required Slices
and BlockRAMs. The results have been obtained by synthesizing the design with
Xilinx ISE 6.1. The packet forwarding of the software switch is executed by one of
the two embedded PowerPC processors. The software switch comprises 24 kByte of
Block RAM while the hardware switch occupies 36 kByte due to an additional
buffer, which is required for communication with the processor. Therefore, the
switch requires 60 kByte for buffering during reconfiguration (when both switches
are active).

Table 1.: Resource requirements of the switch implementations

Parameter

Resources

Slices

RAM16

Software switch

Used/Total

2523/9280

44/88

%
27

50

Hardware switch

Used/Total

6640/9280

52/88

%
71

59

Switch during reconfiguration

Used/Total

9167/9280

64/88

%

98

72

As expected, the high performance of the hardware switch (in terms of low
latency and high bandwidth) comes with the cost of large area requirements on the
FPGA. If this high performance is required, there is no alternative to a hardware
implementation. But if low bandwidth requirements come together with low or no
real-time requirements, a small software based network interface is sufficient. In this
case the hardware resources of the switch can be used, e.g., to speed up other
applications. In order to support a lossless reconfiguration, it is a must that both
switch implementations (hardware and software) are able to run concurrently.
Therefore, the required FPGA resources for our system are at least given by the sum
of the resources of both switches. During reconfiguration nearly 100 % of the Virtex-
II-Pro-20 FPGA Slices are occupied (cf Table 1). After reconfiguration, 30 % of the
FPGA resources are available if the hardware switch is active and about 70 % of the
reconfigurable logic is available if the software implementation is executed by the
processor.

5 Conclusion

In this paper we have introduced methods to use the dynamic reconfiguration
capability of FPGAs in real-time communication without violating real-time
requirements. A dynamically reconfigurable dual-port Ethernet switch has been used
as an example for a prototypical implementation of our approach. The Ethernet
switch is able to adapt to changing requirements of an application during runtime. A
software switch has been developed for minimum resource consumption and a
hardware switch has been realized for maximum performance. The Ethernet switch
detects increasing communication requirements by continuously measuring the

124 Bjom Griese and Mario Porrmann

network load. These mechanisms enable a self-optimization of the communication
infrastructure in distributed systems. The implemented reconfiguration methods
described in this paper support loss-less packet processing even throughout the
reconfiguration, which is necessary to guarantee real-time behavior in
communication systems.

6 References

1. Rammig, F.J.: Autonomic Distributed Real-Time Systems: Challenges and Solutions. In:
7th International Symposium on Object-oriented Real-time Distributed Computing
(ISORC2004), May 12-14, 2004.

2. Torresen, J.: Reconfigurable Logic Applied for Designing Adaptive Hardware Systems.
In: Proc. of Int. Conference on Advances in Infrastructure for Electronic Business,
Education, Science, and Medicine on the Internet (SSGRR 2002W), 2002.

3. Carter, A.: Using Dynamically Reconfigurable Hardware in Real-Time Communications
Systems, University of York, November 2001

4. Underwood, K.D.; Sass, R.R.; Ligeon, W.B.: A Reconfigurable Extension to the Network
Interface of Beowulf Clusters. In: Proceedings of the IEEE Conference on Cluster
Computing (Cluster 2001), 2001.

5. Friedman, D.; Nagle, D.: Building Firewalls with Intelligent Network Interface Cards.
Technical Report CMU-CS-00-173. CMU, May 2001.

6. Lockwood, J.W.; Moscola, J.; Reddick, D.; Kulig, M.; Brooks, T.: Application of
Hardware Accelerated Extensible Network Nodes for Internet Worm and Virus
Protection. In: Proceedings of the International Working Conference on Active Networks
(IWAN), 2003.

7. Furrer, F.: Ethernet TCP/IP for industrial automation. Huethig, 1998.
8. PROFIBUS Working Group: PROFInet: Architecture Description and Specification

Version 2.01, August 2003.
9. Kalte, H., Porrmann, M., Ruckert, U.: A Prototyping Platform for Dynamically

Reconfigurable System on Chip Designs. In: Proc. of the IEEE Workshop Heterogeneous
reconfigurable Systems on Chip. Hamburg, Germany, 2002.

10. Vonnahme, E., Griese, B., Porrmann, M., Riickert, U.: Dynamic reconfiguration of real
time network interfaces. In: Proceedings of the 4th International Conference on Parallel
Computing in Electrical Engineering (PARELEC 2004). Dresden, Germany, 7 - 10
September 2004.

Learning Useful Communication Structures for
Groups of Agents

Andreas Goebels

International Graduate School of Dynamic Intelligent Systems
Knowledge Based Systems, University of Paderborn, Germany

swarmgroupOupb.de

Abstract. Coordination of altruistic agents to solve optimization prob
lems can be significantly enhanced when inter-agent communication is
allowed. In this paper we present an evolutionary approach to learn op
timal communication structures for groups of agents. The agents learn
to solve the Online Partitioning Problem, but our ideas can easily be
adapted to other problem fields. With our approach we can find the op
timal communication partners for each agent in a static environment.
In a dynamic environment we figure out a simple relation between each
position of agents in space and the optimal number of communication
partners. A concept for the establishment of relevant communication
connections between certain agents will be shown whereby the space
the agents are located in will be divided into several regions. These
regions will be described mathematically. After a learning process the
algorithm assigns an appropriate number of communication partners for
every agent in an - arbitrary located - group.

1 Introduction

Multi Agent Systems (MAS) and Swarm Intelligence (SI) are two quite recent
but very promising topics in current computer science research. SI deals with
large sets of individuals or agents that can be seen as a self organizing sys
tem showing emergent behaviour [1] [2]. Ideas from biology are used often and
successfully to solve (optimization) problems in the computer science area. In
both fields, communication between the single agents or particles plays an im
portant role. In nature this communication is, for instance, realized with the
environment as communication partner, the so called stigmergy concept, first
introduced by the biologist Grasse [3], or with special dance moves that can be
found at several bee colonies [4]. In both examples the concept of locality and
self organization plays an important role. In most swarms, flocks or schools in
nature we can hardly observe global communication.

If we have to solve an optimization problem and need inter-agent communi
cation to enhance or even enable solutions, we could make use of a complete
communication structure that allows direct communication between all pairs
of agents. But if we are in settings that deal with a huge number of agents,
such complete structures might produce high communication costs and/or are

Please itse the following formatwhen citing this chapter:

Goebelŝ A., 2006, in IFIP International Federation for Information Processing, Volume 216, Biologically Inspired Coop
erative Computing, eds. Pan, Y, Rammig, R, Schmeck, H., Solar, M., (Boston; Springer), pp. 125-135.

126 Andreas Goebels

not manageable because of information inferences or other real world problems.
Therefore, it would be nice if we would have a concept that can produce a very
small and cheap communication structure without significantly reducing the
quality of the solution.
In this paper, we consider the Online Partitioning Problem (OPP) introduced
in [5]. This problem, which is located in the area of Multi Agent Systems and
Swarm Intelligence, deals with the association of agents with very limited and
mostly local knowledge with different tasks represented as targets. The agents
distribute themselves in an Euclidean space according to the following three
objectives:

(1) The agents have to he distributed uniformly,
(2) Minimize the overall distance toward the targets.
(3) The abilities of the agents should he very simple.

Each of these goals is oppositional to any other, so we look for the best possible
solution fitting in all objectives in quite an acceptable way. The knowledge
of each agent is limited to a (preferable small) communication radius. They
are able to communicate with their direct neighbours and know the distance
to all targets according to their position. A more detailed description of the
abilities of the agents can be found in [5]. There, several basic strategies have
been presented to distribute a small number of agents onto two targets, coping
with the three objectives mentioned before. It turns out that the communicative
strategies perform better than the non-communicative ones. In general, Mataric
discusses in [6] some advantages of using communication in multi agent systems
to reduce locality by addressing two key problems, the hidden state and credit
assignment problem.

In this paper we present an algorithm that is able to construct a successful
communication structure to solve the OPP by defining useful communication
connections between agents. This is done by dividing the space into regions
depending on the position of each agent in relation to the targets and by learning
an ideal number of communication partners for agents in these regions.
This paper is organized as follows. In the next section some terms will be defined.
As an introduction, we roughly present an idea that deals with static settings.
In the main section 4 we present our approach for dynamic groups of agents
and do some mathematical considerations of the single regions we divided the
space into. To show the quality of our approach we present in section 5 several
simulation runs.

2 Definitions

In this paper, we denote the set of all agents with A = {a i , . . . , a„} and the
set of targets with T = {ti,...,tm} {n,m € N). d{pi,p2) defines the geometric
distance between two points in the Euclidean space. This function works in the
same way if we consider two arbitrary agents a and a' or an agent a and a

Learning Useful Communication Structures for Groups of Agents 127

target i, then d{a, a') and d(a, t) calculate the distance between the positions
of two agents or between an agent and a target, accordingly.

3 The static approach

In this section we consider a static setting, i.e. a set of agents on fixed positions
in a two-dimensional, Euclidean space dealing with the OPP. They have to de
cide for one target regarding the objectives we mentioned in the introduction.
For given parameters dictating communication costs and parametrizing the ob
jective function for the OPP we try to find an optimal communication structure
among the agents. Because of the unknown structure and the size of the solution
space we make use of a genetic algorithm to search for good solutions. With
this approach, a solution that optimally fulfils an evaluation function can be
found very fast. We will give only a rough idea of this algorithm, more details
and the results can be found in a master thesis [7] that was done under our
supervision.

3.1 Evaluate the Quality of a Communicat ion Structure

The quality or fitness / of a communication structure can be calculated at any
time by the following formula. The notation is related to the notation in [7].
We sum up the single optimization criteria, i.e. the partitioning quahty, the
distance quality and the communication costs, and weight the single parts.

I Ubi\ / E min {6(ai,tj))\ (V V n,. .x • ̂ Cn,.. n,.1 \

n Oi / \ S S{<ii,target{ai)) E E S{a.i,aj)

with a-l- /3-H7 = l ; a , / 3 , 7 > 0

In this formula, &, denotes the number of agents that have chosen the target
ti in the current partitioning decision and Oj the number of agents that would
have chosen target U in an optimal partitioning. target{ai) defines the target
currently chosen by agent Oj and c{i,j) is either 1 or 0 depending on the exis
tence of a directed communication link from agent Ui to Uj. The highest possible
fitness is / = 1.0.

3.2 T h e genet ic a lgori thm

We implemented a standard genetic algorithm and guide the search among
all possible communication structures by the mentioned fitness function that
consist of three summands representing the different objectives. Therefore, we
consider a multi-objective optimization problem and its single objective repre
sentation.

128 Andreas Goebels

One individual in our GA is a n x n-matrix C describing the connectivity of the
agents among each other. A ' 1 ' on position (i, j) allows agent â to communi
cate with agent aj (directed communication). In other words, C is the adjacency
matrix of the communication graph of the agents.
As a selection operator we use the Best selection and for mutation we simply
swap bits in C with a low probability. The crossover method is a modification
of the Single-Point Crossover. We apply this operator to two communication
matrices Ci and C2 by choosing a random field {i,j) with i,j € [l;n] in the
communication matrix. The two new individuals will exchange a corresponding
rectangular part of the matrix defined by {i,j) as the upper left and {n,n) as
the lower right corner.

4 The Dynamic Approach

In the former section we introduced a static approach to learn optimal commu
nication structures for a given set of fixed agents. But this structure strongly
depends on the special setting it was trained on and cannot be used for other
groups of agents or other positions of the same agents, especially if we con
sider communication costs that are constrained by the distance between two
communication partners. In this section, we will present an idea to learn a use
ful communication structure that is independent from the distribution of the
agents in space.

Therefore, we construct a communication network for a dynamic setting in a
totally different way. The agents do not learn what the best communication
partners are, but they try to find out how many communication partners are
useful for the position they are located at (depending on the position of the tar
gets). That means, the agents learn a function that connects a region that can
be computed locally with an ideal number of communication partners. Since
the agents do not know the extension of the simulation area, the agents have to
calculate the area they are in only with regard to the distances to the targets.
Therefore, we calculate a g-value for each agent position {x, y) by

_ rnin(6{{x,y),ti),...,&((x,y),tr,)) ^

"'^ max{S{{x,y),ti),...,S{{x,y),tn))

Or, to put it in a more informal description, we calculate the quotient for each
agent position by dividing the distance to the closest target by the distance to
the farthest target-'. With this procedure we can calculate values that represent
the area an agent is in without paying attention to its real distance. In the
further text we will call this value the g-value. Because we are in a continuous
space, there is an infinite number of different ^'-values. Therefore we combine
the different g-values in intervals of the same size. For I categories, we obtain
the following intervals / i , . . . , 7j with

In this paper we focus on settings with two targets. If we would consider a higher
number, we maybe will have to make the calculation of the q-value more compli
cated. This will be focus of an upcoming paper.

Learning Useful Communication Structures for Groups of Agents 129

Ik
" ' " ; 11 for k = l

4.1 Our Approach

We solved the Online Partitioning Problem (OPP) for huge agent sets and
enhanced the knowledge base of a selection of agents by enabling communication
with its neighbours.

Table 1. The number of communication partners based on the 5-interval. For each
interval, an appropriate number of communication partners can be defined.

(J-interval
number of communication partners

h
ni

h
" 2

h
ni

Therefore, the agents have to learn the number of communication partners
depending on the ^-interval they are located in. Or, in other words, they learned
an appropriate assignment for each rij in table 1. We call such a table g-table.

4.2 Size and Propert ies of the g-Intervals in Space

In this section we will give a short mathematical insight into the regions we
created with our intervals. We consider an arbitrary g-value, denoted by q'. All
positions in space that produce exactly the value q' are located on two circles
with the same radius r around two centre points. The targets are somewhere
inside this circles. The distance between the two targets is fixed and denoted
by 73.

Theorem

All points in space that have one specific g-value according to two targets
t i and 2̂ on positions (i i^ , i i) and (t2»;^2,j) he on the circles Ci and C2 with
centre points

1 - g2 y ' \̂ i^q.

and radius r = , "> °A, .
(1 - 9 ' ')

Proof

q is calculated for an arbitrary point p = {x, y) by the formula

dist. to nearest target
dist. to farthest target

Without loss of generality we assume that target 2̂ is the nearest one and ii
the farthest one. Therefore, q can be expressed by:

130 Andreas Goebels

-i? "#: fe ^r.

(a) (b)

Fig. 1. Figure (a) siiows the distribution of the g-values when calculated for arbitrary
positions in space. Each grey tone represents one specific g-interval. In this example
there are 30 different ^-intervals. In (b), the circles for the interval borders (here we
have 12 intervals), obtained by our mathematical examination, are visualized. They
perfectly cover the regions.

This can be transformed to:

i^tL+o^-tL -tL - * L , / i , - , 2 . t , N2 fu-g^-t,
1 -q^ ^{^^-i^r^i^.

and this can be simplified to a standard circle equation:

v(i -9=)y . - l ^ ^ - f ^ i ^ Jy- <''^-''-''
i - g 2 y ; y \ i _ ,2

These are centre point Mi and radius r in our Theorem. If target ti is the near
est one, we obtain the other centre point M2 by using the same transformations.

n

4.3 T h e Genet ic Algor i thm

There is a huge number of possible assignments for such a structure as presented
in table 1, especially when dealing with large numbers of agents. Each n, can be
assigned to a value from {0,..., (n — 1)} with n = | ^ | representing the number
of agents. Therefore, we have (n — 1)' possible assignments. We use a genetic
algorithm to search for good ones because we have no prior information about
the structure of the solution space. The fitness of a solution obtained with a
table assignment is the quality of the solution of the OPP . It is set in relation

Learning Useful Communication Structures for Groups of Agents 131

to the optimal solution, regarding communication costs, and is calculated by
the formula:

fitness{tableAssignment) = a • fitnessopp + (1 — CK) • fitnesscomTnunication

The fitness of a OPP solution is calculated as in [8] by

fitnessopp — 0 •

We use the same notation as we did in section 3.

The Communicat ion Costs in the fitness function will be calculated by re
garding the communication distances between two agents that are allowed to
communicate. The number of communication partners is defined in the g-table.
When establishing Uk connections for an agent located in the interval Ik, this
agent will create communication lines to its rik nearest agents. The sum of these
costs will then be set in relation to the maximum costs for communication that
could appear if it holds for each entry in the g-table that n, is equal to (n — 1).
Hence, we can define a partial fitness function for the communication costs:

q — table defined communication graph costs
fttneSSCammunication = T " : 7 :

complete communicatton graph costs
We assume that a subset of agents that own communication connections among
each other will be able to calculate an optimal partial solution for the OPP.

The crossover operator is simple, we use One-Point Crossover. Therefore, a
random point p from {1, ...,1} is chosen. Then we create two new ^-tables by
recombining the tables from two parental individuals split at this particular
point (or column) p. We think that we can maintain coherences between the
table entries with this operator if they exist.

For the se lect ion of individuals for the next generation we implemented the
Roulette Wheel and the Best selection. In comparison runs the Best selection
shows slightly better results, therefore we made our final experiments with this
method. For both algorithms, we use a (/i, A)-scheme and chose 50% of the
individuals for the new generation out of the old generation.

For the mutat ion of a g-table we make use of two mutation parameters, pi
defines the probability for mutating one individual. The second parameter pt
determines the probability of mutating one table entry. When an entry Ik has
been selected to become mutated, we adjust the Uk value in the table by adding
a random value r G { — {n — 1),..., (n — 1)} to the entry and check if the value
is out of range with the formula mutation{nk) = max{min{n — 1, n^ + r) , 0).

4.4 Our Algor i thm

We use a genetic algorithm to find the appropriate number of communication
partners for each interval in the g-table. The most interesting part of the al
gorithm is the calculation of the fitness of an individual in the population, i.e.
the fitness of a g-table. To rate such a g-table Q, we test the quality of a set of

132 Andreas Goebels

agents working on the Online Partitioning Problem that use a communication
structure developed from Q. The fitness of each Q can be calculated by the
following algorithm:

001
002
003
004
OOB
006
007
008
009
010
Oil

FUNCTION double calculateFitnessCqTable Q)

{
agentSet = new random set of agents;
place targets on random positions in space;
agentSet.createCommunicationGraphCQ);

commFitness = calculateConununicationFitnessCagentSet);
oppFitness = calculateOPPSolutionFitness(agentSet);

}
RETURN a • oppFitness + (1 — a) • commFitness;

The function calculateCommunicationFitness{agentSet) simply applies the
communication fitness function as described in 4.3. The higher this value is the
less communication is used.^ The more interesting function is the one calculat
ing the OPP solution fitness, this is shown here in more details:

001
002
003
003
004
005
006
007
008
009
010
Oil
012
013
014
015
016
017

FUNCTION double calculateCommunicationFitnessCagentSet)

{
// create reference solution
d = minimal overall distsmce to targets in optimal partitioning;
s = optimal number of agents on each target in optimal partitioning;

FOR EACH agent a in agentSet DO

{
IF (#outgoingConnectionsCa) > 0) //derived from q-table

calculateLocalOptimalSolutionCa, communicationPeirtners) ;
ELSE

choose nearest target;

},
d = calculateDistanceFitness(agentSet, d);
s' = calculateDistributionFitness(agentSet, s);

}
RETURN 13 • d' + (1- 0) •

The function calculateLocalOptimalSolution{a,communicationPartners) in
line 9 assumes that an agent can calculate the optimal partitioning for the
agents it communicates with. This is quite an idealistic picture because we still
have a hard problem, but we can take this calculation power into account by
increasing the influence of the communication costs for the fitness function.
Anyway, if this function can calculate only an approximation, our algorithm
will still work.
The pseudocode algorithms show only the most important steps of our algo
rithm, for a more detailed insight you can have a look at the original Java sources
that are available for download and further experiments via our webpage'^.

^ In our simulations we repeated lines 3-8 several (five) times to obtain more mean
ingful fitness values.

^ http://www.upb.de/cs/ag-klbue/de/staff/agoebels/index.html

Learning Useful Communication Structures for Groups of Agents

5 Results

133

In this paper, we concentrate on the results for the dynamic approach presented
in section 4, the results for the static approach (section 3) can be found in [7].
There, a good communication matrix could be found fast for every given fixed
set of agents.

Fig. 2. This figure presents the development of the fitness over 500 generations. We
show the average fitness of the whole generation and the fitness development of the
best individual in population. This graph illustrates the average result over 25 runs.
The parameters we made use of can be found in the source code package. The fitness
rises while the communication cost could be reduced. The single graphs are smoothed
with a Bezier curve for better visibility.

5.1 Fi tness Deve lopment

First of all, we examined how the fitness of the GA develops. Figure 2 shows a
typical fitness development. Both the best and the average fitness rise very fast
to a high level and remain there. As a reference we present the fitness value
of a non communicative algorithm choosing always the nearest target for each
agent. This reference fitness is significantly lower than the fitness value achieved
with our approach. By adjusting the weights for the communication costs we
can obtain any fitness value between 1.0 (no communication cost, a = 1) and
the reference function (a = 0). Hence, we can conclude that inter-agent com
munication enhances the solution quality of the whole group and our approach
finds good OPP solutions for given communication costs or restrictions.

5.2 Deve lopment of q-Table values

Once we could see that our idea works, we wanted to get more insight into the
communication structure the agents learn. Therefore, we observed the changes

134 Andreas Goebels

of the (?-table entries during the learning process. Figure 3 shows a typical pic
ture representing the value development.

communication partners

0.6
0.5

,0.4 q-tabie intervais

GA generations

Fig. 3. The development of the g-table entries during the learning process.

After several hundred generations the g-tables look similar for all settings. In
this figure the average over all q'-tables in 25 runs is presented. In the early
generations the number of communication partners is high and nearly identical
for all intervals. But the communication structure becomes fastly sparser and
in the last generations we can see that the g-table can be divided into 2 parts.
For intervals containing small q-values the agents learned to have nearly no
communication partners^. For g-values greater than 0.5 it seems to make sense
to communicate with a small number of neighbours to increase the fitness to a
near optimum value. One other key result is that the overall number of com
munication connections between agents is very low compared to the maximum
possible value. This shows that a communication structure does not necessarily
have to be very complex or massive if we generate it in an intelligent way.

6 Conclusion & Future Work

In this paper we presented a genetically guided approach to learn qualified com
munication structures for sets of agents to solve an optimization problem. For a

* The intervals / i and I2 contain all g-values below 0.1. As we saw in 4.2, the area
in space representing all possible values in these intervals is very small compared
to the remaining space, hence the probability for an agent to be placed in one of
these areas is very low and it does not influence the fitness significantly.

Learning Useful Communication Structures for Groups of Agents 135

static environment we presented a rough idea how the optimal communication
structure can be found by an algorithm adjusting a communication matrix. For
dynamic and random settings we presented a new approach which offers guide
lines to create a small set of communication connections. Therefore, only the
position in space in relation to some targets is necessary, the optimal or near
optimum number of communication partners can be found by our approach.
In our future research we will restrict the values in the g-table and will try to
learn or cope with restricted communication distances. This will enlarge the
possible number of real-world applications. We also will examine the influence
of the different probabilities for each g-interval on the fitness development and
the overall solution quality.

References

1. Eric Bonabeau, Marco Dorigo, and Guy Therauiaz, Swarm Intelligence - From
natural to artificial Systems, Oxford University Press, 1999

2. James Kennedy and Russel C. Eberhart, Swarm Intelligence, Morgan Kaufmann,
2001

3. P.-P. Grasse, La Reconstruction du nid et les Coordinations Inter-Individuelles
chez Bellicositermes Natalensis et Cubitermes sp. La theorie de la stigmergie: es-
sai d'interpretation du comportement des termites constructeurs, Insectes Sociaux,
1959.

4. K. von Prisch, The Dance Language and Orientation of Bees, Harvard University
Press, Cambridge, 1967

5. Andreas Goebels, Hans Kleine Biining, Steffen Priesterjahn, Alexander Weimer,
Towards Online Partitioning of Agent Sets based on Local Information, Proceed
ings of the International Conference on Parallel and Distributed Computing and
Networks (PDCN), 2005

6. Maja J. Mataric, Using Communication to Reduce Locality in Distributed Multi-
Agent Learning, Journal of Experimental and Theoretical Artificial InteUigence,
special issue on Learning in DAI Systems, Gerhard Weiss, ed., 10(3), 1998, 357-
369.

7. Lars Beckmann, Evolutionare Entwicklung und Optimierung von Kommunikation-
sstrukturen zur Koordination von Agenten [Evolutionary Development and Opti
mization of Communication Structures for Agent Coordination], Master Thesis,
Univ. of Paderborn, 2005

8. A. Goebels, A. Weimer, S. Priesterjahn, Using Cellular Automata with Evolutionary
Learned Rules to Solve the Online Partitioning Problem, in Proceedings of the IEEE
Congress on Evolutionary Computation (CBC'05), Edinburgh, 2005, pp. 837-843

2

Maintaining Communication Between
an Explorer and a Base Station*

Miroslaw Dynia-', Jaroslaw Kutylowski^, Pawel Lorek^,
and Friedhelm Meyer auf der Heide^

^ DFG Graduate College "Automatic Configuration in Open Systems",
Heinz Nixdorf Institute, University of Paderborn

International Graduate School, Heinz Nixdorf Institute, University of Paderborn

4
•̂ Mathematical Institute, Wroclaw University
Heinz Nixdorf Institute, University of Paderborn

Abstract. Consider a (robotic) explorer starting an exploration of an
unknown terrain from its base station. As the explorer has only limited
communication radius, it is necessary to maintain a line of robotic relay
stations following the explorer, so that consecutive stations are within
the communication radius of each other. This line has to start in the
base station and to end at the explorer.

In the simple scenario considered here we assume an obstacle-free ter
rain, so that the shortest connection (the one which needs the smallest
number of relay stations) is a straight line. We consider an explorer
who goes an arbitrary, typically winding way, and define a very sim
ple, intuitive, fully local, distributed strategy for the relay stations -
our GO-TO-THE-MIDDLE strategy - to maintain a line from the base
station to the robot as short as possible.

Besides the definition of this strategy, we present an analysis of its
performance under different assumptions. For the static case we prove
a bound on the convergence speed, for the dynamic case we present
experimental evaluations that show the quality of our strategy under
different types of routes the explorer could use.

1 Introduction

In our research we investigate the exploration of a planar terrain without ob
stacles. To achieve this goal, an explorer is used who starts its work at a base
station and progresses to gather information about the whole terrain. In order
to construct a communication path between this explorer and the base station,
we employ mobile relay stations. These relay stations are small, mobile robots

Partially supported by the EU within the 6th Framework Programme under con
tract 001907 (DELIS) and by the DFG-Sonderforschungsbereich SPP 1183: "Or
ganic Computing. Smart Teams: Local, Distributed Strategies for Self-Organizing
Robotic Exploration Teams".

Please use the following formatwhen citing this chapter:

Dynia, M., Kutylowsld, J., Lorek, P., auf der Heide, EM., 2006, in IFIP International Federation for Information Pro
cessing, Volume 216, Biologically Inspired Cooperative Computing, eds. Pan, Y, Rammig, E, Schmeck, H., Solar, M.,
(Boston: Springer), pp. 137-146.

138 M. Dynia, J. Kutylowski, P. Lorek, and F. Meyer auf der Heide

which are responsible for routing messages between the explorer and the base
station.

In order to minimize the number of necessary relay stations, they should be
organized on a line close to the straight line connecting the explorer and the base
station. Furthermore it is necessary that the relay stations can communicate
with each other, so consecutive stations must be placed in a limited distance
on this line.

Since we allow the explorer to walk along an arbitrary route, its position
updates frequently. Arranging all relay stations on the straight line would thus
require to communicate its position updates to the whole path, resulting in a
globally controlled strategy incuring a substantial communication load. Thus we
are looking for simple distributed, local strategies which allow the relay stations
to arrange near to their optimal positions based on very local information.
We introduce a strategy, our G O - T O - T H E - M I D D L E , which does not use any
communication - relay stations perform their movement basing only on sensed
positions of their communication partners. This approach is called "interaction
via sensing" as defined in [1].

In Section 2 we introduce a local and distributed strategy which keeps the
relay stations close to their optimal positions on the line. This strategy is very
intuitive and could also be used by human explorers. A similar behavior can be
observed in bird flocks maintaining formation (see [2]).

We analyze our strategy both in a static and in a dynamic setting. In Sec
tion 3 we describe the static setting, where the explorer does not move, and the
relay stations are initially placed on an arbitrarily winding route taken by the
explorer until now. We give a worst-case theoretical analysis which describes the
time needed for the relay stations to converge to positions near the straight line
between the base station and the explorer. In Section 4 we let the explorer move
and let the relay stations continuously apply our strategy. We experimentally
evaluate the performance of the strategy, using three different types of routes
taken by the explorer. The proofs of several technical lemmas can be found in
the full version of this paper.

1.1 Re la ted work

From a general point of view, our work can be positioned in the area of swarm
intelligence [3], particularly in the field of robotic intelligent swarms [4, 5, 1].

Our work has much in common with the prior research in the areas of pattern
formation and formation maintenance. The work described in [6, 7, 8, 9, 10]
considers swarms of robots which should self-organize to form a pattern (a line,
circle, . . .) on a plane or to maintain a formation while marching.

The most similar work to ours is [6]. Among others it presents an algorithm
C O N T R A C T I O N which is very similar to our strategy. Nevertheless, although the
topic of forming a geometric pattern on a plane has been considered very often,
we are not aware of any analysis giving strong theoretical bounds on the worst-
case performance of a strategy. Up to our knowledge the topic of mobile robots

Maintaining Communication Between an Explorer and a Base Station 139

self-organizing to form a line has not been evaluated experimentally under the
performance aspect yet.

1.2 M o d e l

We construct a graph modeling the base station, the explorer and the relay
stations with vertices. The vertices are always logically organized in a path
{vi,V2, • • • ,Vn-i,Vn), where vi corresponds to the base station, Vn to the ex
plorer and V2, • • •, Vn-i to the relay stations. To represent the path we introduce
undirected edges {vi,Vi+i) for every i e { 1 , . . . , n — 1}. The communication is
routed along this path from vi to v„ or in the other direction. The graph is
embedded on a plane, thus we will use the notion of a position p{v) of a ver
tex V. Distances between vertices are given by the L2 norm and described by
\{Vi,Vi+l)\.

The goal of a strategy minimizing the distance between the relay stations is
to arrange the relay stations on the line between vi and Vn in equal distances
from each other, or, in other words, to bring the relay stations as near to this
optimal positions as possible.

We require every edge on the path v i , . . . , w„ to have at most length d, so that
the maximum transmission distance of d is not exceed and communication links
between partners on the communication path can be hold up. A communication
path fulfilling this property is called valid.

2 The Go-To-The-Middle Strategy

The following G O - T O - T H E - M I D D L E strategy is executed repeatedly by every
relay station. Relay station i observes the positions p(wi_i) and p{vi+i) of its
communication partners and moves itself into the middle of the interval from
Vi-.l t o Vi+l.

Fig. 1. Node Vi executes GO-TO-THE-MIDDLE strategy by moving into the middle
of the interval between Vi-i and Vi+i.

For simplification of the analysis we will assume that the G O - T O - T H E -
MlDDLE strategy is invoked in discrete time steps. Each time step is subdivided
into two shorter substeps. In the first one, all relay stations check the positions

140 M. Dynia, J. Kutylowski, P. Lorek, and F. Meyer auf der Heide

of their neighbors. In the second substep all relay stations move to the middle
of the observed positions of its neighbors as described above.

Since the explorer moves, it may be necessary to extend the path of relay
stations. We perform this at the end of the path, between the last relay station
and the explorer. This happens every time the distance between Vn-i and v„
increases to more than d. We rename the vector v appropriately, so that f„+i
describes the explorer and u„ the new relay station. The new relay station is
inserted in the middle of the interval connecting the last relay station and the
explorer.

If the explorer can carry a sufficiently large pool of relay stations then this
strategy is easily executed, since new relay stations are available at the ex
plorer's position.

If this is not the case, the base station has to make sure that enough relay
stations are on the path. As it does not know about the position and movement
of the explorer, we modify the strategy slightly. We add to each relay station
Vi a second one, its partner, at the same position as Wj. During each G o - T o -
T H E - M I D D L E step, a relay station and its partner perform the same movement.
Afterward, one of them goes the next relay station and becomes its partner. At
the base station, a new relay station is introduced as the partner of V2. At the
explorer there are two possibilities. If the explorer has not moved far away from
Vn, the partner of Vn starts going back to the base station and is reused there. If
a new relay station is needed to hold up the communication with the explorer,
the partner of w„ is used. Limiting the maximal speed of the explorer to d/2
it will be necessary to insert a new relay station to the communication path at
most every two rounds. Thus the new relay station in the communication path
will obtain its partner in the next round after it has been inserted.

This modified strategy uses at most 2n relay station in addition to those
needed by G O - T O - T H E - M I D D L E , half of them being the partners of all relay
stations and half of them being on their way back to the base station.

We may also consider removing relay stations when they are close enough
to each other. Formally, a relay station Vi can be removed from the path if
the distance |(t;j_i,Wj_|_i)| < d. The vector v is then re indexed appropriately
and the released station goes back along the communication path to the base
station.

We show that both strategies preserve the validity property of the commu
nication path in the following theorem.

T h e o r e m 1. If a communication path is valid then, after applying the G o - T o -
T H E - M I D D L E strategy, it remains valid.

3 Static setting

We analyze the convergence rate of G O - T O - T H E - M I D D L E and assume a static
scenario - the explorer does not move. We measure the time which is required

Maintaining Communication Between an Explorer and a Base Station 141

so that every relay station is within some given distance from the straight line
connecting the base station and the explorer.

For the purpose of this analysis we assume that the number of nodes on the
path is n. We do not remove any nodes from the path, even if they are very
close to each other. The positions of nodes vi and w„ are fixed - they do not
move during the execution of G O - T O - T H E - M I D D L E , while all other nodes can
move. This corresponds to an explorer standing at its position, and all relay
stations executing the G O - T O - T H E - M I D D L E strategy.

Fig. 2. Relay stations and the area of diameter e around the straight hne

For a node Vi we define d* {vi) to be the distance of node Vi to the straight line
crossing nodes vi and Vn before step t of the execution G O - T O - T H E - M I D D L E .
Distance of a point to a line is defined in the usual geometrical way, as depicted
in Fig. 2. We assume that at the beginning all nodes (relay stations) are on one
side of the line connecting the explorer and the base station. If not, the nodes
can be divided into distinct segments, and the analysis can be applied in each
segment separately. The case, when all nodes are on one side yields the worst
case.

Theorem 2 (Main Theorem) . Consider a valid communication path with
n — 2 relay stations. Then after at most Qn? log ^n steps for every i it holds
d{vi) < e for any e > 0.

Proof. Obviously it holds d\vi) = d\vn) = 0 for all t > 1. We define A* :=
[d* (v 2) . . . , d* {vn-i)] to be the vector of distances of relay stations to the straight
line. A^ describes the start configuration.

Then after one step of G O - T O - T H E - M I D D L E the distance

d'ivi) =
d'-\vi_i) + d'-'{vi+i)

for all 1 < i < n, which effectively means that d\v2) = d*-^{vz)/2 and
d*(v„_i) = d*(w„_2)/2 since d*(i;i) = d*(^„) = 0.

We can describe the changes of the vector A^ by multiplying it with an
appropriate transition matrix L so that A^ = A*~^L = A°L*. This nxn matrix

142 M. Dynia, J. Kutylowski, P. Lorek, and F. Meyer auf der Heide

is defined as follows: L{i,j)
i,j we have L{i,j) = 0.

for all i,j such that |« — i | = 1- For all other

/ 1/2

1/2 1/2

1/2

1/2 1/2

v

1/2

1/2 1/2

1/2

Matrix L is symmetric, substochastic and irreducible. By Lemma 1 all eigen
values of L are different and thus L is diagonalizable. The rest of the proof of
the Main Theorem goes in the following way. We will compute the eigenvalues
and eigenvectors of L. A lemma about the convergence rate of L* will allow us
to give an upper bound on the largest value of L* after t steps. From this we
will conclude a bound on the largest value of A* and the Main Theorem easily.

L e m m a 1. The eigenvalues of the matrix L are

A,- = cos
JTT

, n + 1

The corresponding eigenvectors are

3 = 1,

Xjii) sm n + 1 i = l , ,n, j = 1,

L e m m a 2. For a diagonalizable, irreducible, symmetric, substochastic n x n
matrix P and any i, j we have

P\i,3)<nap'' ,

where j3 is the largest absolute value of eigenvalues of the matrix P and a =
maxij^i>j> \xj{i) • Xj'{i')\ with Xj denoting the j-th eigenvector of matrix P.

The proofs of both lemmas can be found in the full version of the paper. After
t steps, we have L*{i,j) < naP* for any i,j, sticking to the definitions of a and
P from Lemma 2. As all entries of all eigenvectors of L are not larger than 1,
we have a < 1. The value of | cos ^ j ^ | is the largest for j/{n + 1) approaching
0 or 1. Without loss of generahty we set j = 1. Then we have /3 = cos •^^•

Now assuming that the communication distance between nodes is d, we know
that A^ can contain an entry as big as dn. On the other hand we know that
entries of L* are always non-negative. Recall that ^* = A°L*. Then to have
d^{vi) < £ we must have each element of L* smaller than -^ since d^{vi) < dn.

Maintaining Communication Between an Explorer and a Base Station 143

We thus have to find a t such that L {i,j) < -^ for ah i,j. Using Lemma 2
we should then have na/3* < -^ and accordingly /?* < -^. We still have to find
an upper bound on (3. As argued before, (3 is largest, when 7r/(n+ 1) approaches
0. Thus let us expand cos a; around a; = 0 from the Taylor series. We obtain
cosa; < 1 - 3- + | j , and set x = 7r/(n + 1). Since 7r2/2 > 1 and 7r'*/24 < 5 we
obtain

2 4
TT _, 7r TT

n + 1 - 2(n + 1)2 ^ 24(n + 1)4

(n + l) 2 (n + l) - * •

Since I^IIY < 2(n+i')^ '̂ °'̂ ̂ sufficiently large n we have cos ^^^ < 1 — 2(„ii)2 •
This lets us conclude that for t = 2(n + 1)^ we obtain /3* < 1/e and for t =
2(n + 1)2 • In irfn^ we get /3* < -^. Assuming that d is constant and upper
bounding 2 (n + 1) with 3n we have that /3* < ^ ^ for t — Qn^ In j-n. This proves
that after t = 9n^ In ^n steps we have d*{vi) < e. 0

4 Dynamic setting

In this section we investigate the performance of the G O - T O - T H E - M I D D L E
strategy in a dynamic scenario. We first present a route for the explorer which
apparently is a hard instance for our strategy. In the second part we investigate
our strategy on a very regularly winding route, and on a random walk.

4.1 A hard case

We set the maximum transmission distance of stations to 5 units. The experi
ment starts with the explorer in distance r from the base station. Relay stations
are aligned on a straight line between the base station and the explorer, each
of them in distance 5 from its neighbors.

Then the explorer starts to walk on a circle with radius r around the base
station. The relay station path has to keep up with the motion of the explorer.
We let the explorer move always with the same constant speed of 1 unit per
time step.

We have discovered that direction changes are profitable for the G o - T o -
T H E - M I D D L E strategy - see for example the experiments in the next subsection.
According to this observation a cyclic scenario is very hard for the G o - T o -
T H E - M I D D L E — since the explorer steadily moves on the circle, it does not
meaningfully change its movement direction and has a high angular speed.

We can alter the speed of the relay stations by allowing them to execute a
variable number of G O - T O - T H E - M I D D L E rounds per time unit. We denote the
number of G O - T O - T H E - M I D D L E rounds per time unit as the speed of the relay
stations.

144 M. Dynia, J. Kutylowski, P. Lorek, and F. Meyer auf der Heide

^ . . , . „

/ • • • /

; F'at)i of relay stations

; I »Bas

Movaiicia i-ud.-'.

e station ;

(a) Path of relay sta- (b) Ratio 7^ in dependence of relay sta
tions following explorer tion speed

Fig. 3. Go-To-THE-MIDDLE for the hard movement model

0 200 400 fiOO 800 1000 120O 1400 1600 1800 2000

Circle radiua r

0 200 400 600 800 1000 1200 1400 IfiOO 1800 2000

Circle radius r

(a) Ratio TZ in dependence of radius (b) Speed necessary for a ratio 7?. < 1.5

Fig. 4. Performance of GO-TO-THE-MIDDLE in tlie hard movement model

The performance of the G O - T O - T H E - M I D D L E strategy is measured in terms
of the length of the communication path between the explorer and the base
station. In an optimal solution, this length would be always equal to r. Since
the relay stations may not keep up with the explorer, the length of the line may
increase to more than r (obviously new relay stations are introduced then).

We observe that for each radius r and each speed s there is some length Zmax
of the communication line which is stable, i.e. the communication line length
won't exceed this value no matter how long the experiment runs. Figure 3(a)
shows the typical curve of the communication line after it reached its stability
point. This curve will now only rotate with the movement of the explorer on
the circle.

To visualize the performance of the strategy we introduce the ratio Tl be
tween the length of the communication line Imax and the length of the optimal
interval connecting the explorer and base station. This ratio is investigated in
Fig. 3(b) for different speeds of relay stations. Fig. 4(b) shows the ratio TZ in
dependence of the radius r with the speed fixed to 10 for all radii.

Maintaining Communication Between an Explorer and a Base Station 145

' "" l l l l l l l i i i i r
; S 10 12 14 16 IS 20

Sjieed of relay stations

(a) Ratio 7?. for random walk in depen- (b) Ratio TZ for snake-like exploration in
dence of speed dependence of speed

: ! ' : : : ' " l l l i n n n n n : '.,.": i lnnu in i i i
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Distance of walk from hose. Btatioii

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Distance of walk from base station

(c) Ratio 7?. for random walk in depen- (d) Ratio TZ for snake-like exploration in
dence of distance dependence of distance

Fig. 5. Performance of GO-TO-THE-MIDDLE for average-case movement models

The maximum length of the communication path /ĵ ax (and thus the ratio
TZ) grows with the radius r, since with the radius r the number of employed
relay stations grows and the propagation of the explorer's position updates takes
longer time. The growth of TZ is hnear with the radius.

Fig. 4(b) shows the speed necessary for the ratio TZ to be not greater than
1.5. This calculated speed is thus necessary to have a communication path which
is a fairly well approximation of the optimal one. We also see a linear increase
here.

4.2 Average cases

Within this section we investigate two movement models for the explorer. One
of them is a random walk on the plane, performed with a constant speed, with a
direction randomly chosen in each time step. The direction is chosen uniformly
at random from the angle (—30, -1-30) degrees from the current direction of the
explorer. The movement patterns are depicted in the full version of the paper.

For both movement models the ratio between the optimal communication
path length and the actual communication path length TZ has been computed
in each time step. Figures 5(a) and (b) show the average and maximum values
of this ratio for both movement models and for different speeds. The same
movement pattern can be executed in various distances from the base station.

146 M. Dynia, J. Kutylowski, P. Lorek, and F. Meyer auf der Heide

Figure 5(c) and (d) shows the results. Interestingly, when the movements are
performed in a large distance from the base station, the ratio between the
optimal communication path length and the actual path length is low - this
comes from the fact that a small movement of the explorer in a large distance
from the base stations does not cause large changes in the position of the optimal
path and the angular speed of the explorer is low.

5 Conclusion

The experiments and theoretical considerations regarding the performance of
G O - T O - T H E - M I D D L E allow to compute a relay station speed which will give
a good approximation factor of the optimal communication path by the relay
stations.

The experimental analysis has been performed to obtain information on the
behavior of our strategy in various situation. This analysis gives several hints
on how to choose the speed of relay stations when the movement pattern of
the explorer is not known beforehand. The experimental average-case analysis
proves that our strategy can effectively maintain the communication path within
an approximation factor of 1.5 with a relay station speed as low as 3, when
certain assumptions about the movement of the explorer are known.

References

1. Y. U. Cao, A. S. Fukunaga, and A. B. Kahng. Cooperative mobile robotics:
Antecedents and directions. In Autonomous Robots, volume 4, pages 1-23, 1997.

2. C. W. Reynolds. Flocks, herds, and schools: A distributed behavioral model. In
Computer Graphics, pages 25-34, 1987.

3. Y. Liu and K. M. Passino. Swarm intelligence: Literature overview.
4. R. Arkin. Behavior-based robotics. Cambridge, MA: MIT Press, 1998.
5. G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. A taxonomy for swarm robotics.

In lEEE/TSJ International Conference on Intelligent Robots and Systems, pages
441-447, 1993.

6. K. Sugihara and I. Suzuki. Distributed motion coordination of multiple mobile
robots. In 5th IEEE International Symposium on Intelligent Control, volume 1,
pages 138-143, 1990.

7. Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile robots:
Formation of geometric patterns. SI AM J. Comput, 28 (4): 1347-1363, 1999.

8. I. Chatzigiannakis, M. Markou, and S. Nikoletseas. Distributed circle formation
for anonymous oblivious robots. In LNCS, volume 3059, pages 159-174, 2004.

9. Q. Chen and J. Y. S. Luh. Coordination and control of a group of small mobile
robots. In IEEE International Conference on Robotics and Automation, volume 3,
pages 2315-2320, 1994.

10. H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Distributed memoryless point
convergence algorithm for mobile robots with limited visibility. In IEEE Trans
actions on Robotics and Automation, volume 15, 1999.

Active Patterns for Self-Optimization
Schemes for the Design of Intelligent Mechatronic

Systems

Andreas Schmidt
UNITY AG, Lindberghring 1, D-33142 Buren, Germany,

Andreas.Schmidt@unity.de, http://www.unity.de

Abstract. Self-optimizing mechatronic systems react autonomously and
flexibly to changing conditions. They are capable of learning and optimize
their behavior throughout their life cycle. The paradigm of self-optimization is
originally inspired by the behavior of biological systems. The key to the
successfiil development of self-optimizing systems is a conceptual design
process that precisely describes the desired system behavior. In the area of
mechanical engineering, active principles based on physical effects such as
friction or lever are widely used to concretize the construction structure and
the behavior. The same approach can be found in the domain of sottware-
engineering with software patterns such as the broker-pattern or the strategy
pattern. However there is no appropriate design schema for the development of
intelligent mechatronic systems covering the needs to fijlfill the paradigm of
self-optimization. This article proposes such a schema called Active Patterns
for Self-Optimization. It is shown how a catalogue of active patterns can be
derived from a set of four basic active patterns. This design approach is
validated for a networked mechatronic system in a multiagent setting where
the behavior is implemented according to a biologically inspired technique -
the neuro-fiizzy learning method.

1 Introduction - Self-Optimization in Mechatronic Systems

Future systems in the area of mechanical engineering will comprise
configurations of intelligent system elements, where the communication and
cooperation between these elements shape the behavior of the overall system. In
terms of software engineering these are distributed systems of interacting agents.
Agents are autonomous and adaptive function modules which can themselves initiate
actions. These function modules are heterogeneous subsystems with mechanical,

Please use the following format when citing this chapter:

Schmidt, A., 2006, in IFIP International Federation for Information Processing, Volume 216, Biologically Inspired Coop

erative Computing, eds. Pan, Y, Rammig, F., Schmeck, H., Solar, M., (Boston: Springer), pp. 147-156.

148 Andreas Schmidt

electronic and information technology components. The agents' behavior can be
modified while the system is in operation - this is expressed by the term "adaptive".

A self-optimizing system is characterized by four fundamental aspects (Fig. 1);
the target system, in the sense of a hierarchy of a number of targets; the structure,
e. g. the topology of mechanical components, sensors and actuators; the behavior,
which is the system's reaction to influences from its environment; and the
parameters that characterize the system components [1].

Influences on the Technical System

Environment User
i 9 chg'Kied usage

System
« g viea- ana 'e?f

Maihemalfca!
8ymbo}s;

the tsfiaviOT

ReptesentatlQi%et
physical;
iopol°9l̂ <atf(]CfBta

foalruction-baseij
processing us)^ data
dascriptton

Technical System {e. g. Shuttle, Suspenston-/Tilt-IVIoclute}

Fig. 1. Aspects of Self-Optimizing Systems

According to [2], intelligent mechatronic systems can be divided up into three
layers: the Multifunction-Module layer (MFM) that is close to the sensor-Zactuator,
e. g. suspension-Ztilt-modules. The Autonomous Mechatronic System (AMS) layer
covers system elements that act autonomously in its environment such as single
shuttles. The Networked Mechatronic System (NMS) layer represents unions of
AMS, e. g. convoys that pursue common goals such as crossing a switch'.

The aim is to carry out self-optimization on the basis of mathematical models,
e. g. using a realistic physical model of the controlled system supplemented by
excitation and evaluation models. Frequently, it will not be practicable to use models
for reasons of cost, so model-based self-optimization is combined with what is called
"behavior-based self-optimization" which acts quasi-nondeterministic. This means
that changes occurring during operation are sensed and analyzed, and then,
depending on the results of this analysis, either another appropriate mathematical
optimization model is loaded, or, if the limitations of available models are exceeded,
the system reverts to using past experience in the form of learned structures or

' The sample mechatronic system originates from the New Railway Technology project
Paderbom (NBP) [3]. NBP has set-up a test-track where railway shuttles autonomously
drive on an innovative magnetic track system.

Active Patterns for Self-Optimization 149

parameter settings from its knowledge base. The self-optimization process proceeds
continuously and repeatedly according to the subsequent three actions:

1.

2.

Analysis of current situation: The system records its own state and the state of
its environment. The necessary information may be obtained by communicating
directly with other systems or by accessing previously recorded observations.
Determination of targets: The system determines its current target system in
view of the current situation, and, if necessary, also adapts it.
Adaptation of the system behavior: The adaptation itself is carried out by
modifying the parameters, the structure, and/or the behavior of individual system
elements.

2 Current Situation - Design of Intelligent Mechatronic Systems

The design of self-optimizing systems is based on systems engineering [4],
design methods of conventional mechanical engineering [5] and the design
methodology of mechatronics [6] and extends those methods with essential aspects
of the self-optimization paradigm. The conception phase constitutes one of the most
decisive stages within the design of self-optimizing systems (Fig. 2). This is when
fundamental functionalities (Function Hierarchy) and the structure (Construction
Structure and Component Structure) of the system are determined.

Incroasing Concretizatipn o
^ • ^ ^ • p ^^ •»»

Hydraulic Cylinder

1 ^ 1 i I !
Deduct
position

Learn from
experience

Genefale
force load

T-ans n '
' 3 ICO

.®>-i<S!^

Lfigsnd

CD

CE
Syslemelement (SE)

Component

logical grouping

Energy flow

Informationfiow

Complianca

Affiliation

Active / Software Pattern - j ^ ^ " v ' " -* -*^

\ j <F<^ [/
• ! • • ' I

\ /Learrnr V ' i t ' . ' .

Fig. 2. Core steps of the early stages of system conception

In order to reuse successfully proven previous system engineering knowledge,
active patterns are utilized. Active patterns contain template system elements and
behavior to realize flinctions that are concretized in an active structure. Fig. 3 depicts

150 Andreas Schmidt

a categorization of domain-specific patterns [1], e. g. active principles AP of
mechanical engineering according to [5] such as AP Cylinder in Fig. 2 or software
patterns SP such as the broker pattern according to [7] or SP Distributed Knowledge
in Fig. 2. However, those patterns do not address the specific needs for the superior
paradigm of self-optimization, namely specifying intelligent and autonomous
behavior in an unknown or partially known environment by analysis of the current
situation, determination of targets and adaptation of the system behavior. This is
where the demand for active patterns for self-optimization comes into play shown as
AP Self-Optimization (Fig. 2) and categorized as a pattern of information processing
(Fig. 3).

Fig. 3. Category of Patterns for the Design of Intelligent Mechatronic Systems

3 Approach - Design with Active Patterns for Self-Optimization

Active patterns for self-optimization (APso) realize functions for self-optimizing
systems such as autonomous planning, cooperation, and learning. APso constitute
templates which specify generally accepted, autonomous and intelligent behavior by
using principle-models, application-scenarios, structure-models, behavior-models
and method-models (Fig. 4). The principle-concept characterizes the basic idea of the
APso- It is used to allow the designer an intuitive access to the APso- Application-
scenarios depict situations in which the APso have already been applied successfully
in the past. Those scenarios shall help the designer to select an appropriate APso for
the task at hand. The structure-model specifies necessary participating system-
elements and their relations among each other. One or more behavior-models
describe adaptation-processes as a kind of state changes. The focus is on the
modeling of autonomous intelligent behavior, which activates, supports and/or
executes these state changes. This way a system is transformed from a given initial
state to a desired target-state by the use of specific methods. Method-models specify
those methods in detail.

Active Patterns for Self-Optimization 151

Principle-Concept
Generally understandable

description for the selection of
an appropriate AP^Q

Laam-Object Lesm-Subject

9 <(^J Q
A I p„_,A _A

structure
Necessary participating

system elements and their
relations

(Extract of Active Structure)

CaniwKC./ \pbjeei t .Q/

/ ^ Active Pattern for
Solf-Optimization

-:> AP„- r.%K/

Behavior
Specification of the Self-Optimization

Process or Parts of it

Application-Scenario
Applications where A P ^ have

been successfijlly applied.

Z Ev«nt

Metiiods
Realization of the specified

behavior by modei-based or
behavior-based approaches

Neuro-Fuziy (NF) Malhod

Fig. 4. Components of Active Patterns for Self-Optimization

We structure active patterns according to the House of Active Pattern for Self-
Optimization (Fig. 5).

The Roof: Context the Active Pattern is embedded in

Inadequate Knowledge about
current System and Environment

First Floor: Necessary Basic-Activities for SeEf-Optlmization

/ t , , axploltmo „ , r \

Learn from the past Act in the present Explore the ftjture

The Pillars: Basis Active Patterns for the Design of Seif-Optimizing Systems

Acti.'O Fatterr
for Reflection

<<^^^<^tS>\
Active Pattern

fo- £/|)lait::t,on
Act"<e Patter'!
for Interaction

' Active Partorp i
fsi ExploiaVoii !

ICi iy

Fig. 5. The House of Active Patterns for Self-Optimization

Four basic active patterns can be differentiated which are derived from the
pattern context and necessary activities for fulfilling the self-optimization process.
The context may involve problem areas such as inadequate knowledge about past
system and environment behavior, inadequate knowledge about the current system

152 Andreas Schmidt

and environment behavior or uncertainty about the future behavior. The context
specifies demands for necessary basic-activities, such as learning from the past
which we call reflecting, acting in the present which we denominate exploiting
knowledge as well as interacting with other system elements and finally exploring
the future. This approach leads to the four basic Active Patterns for Reflection,
Exploitation, Interaction and Exploration.

The basic active patterns can be detailed, combined and concretized (Fig. 6).
Detailing an active pattern means to specialize the pattern structure and pattern
behavior according to the method which shall execute the system behavior, e. g.
detail Reflection towards Reinforcing Reflection in order to use the method
reinforcement learning [8] where successful past behavior is rewarded. Basic
patterns can be combined to form typical compound behavior, e. g. the combination
of Exploitation and Reflection leads to a typical compound behavior in a multiagent
setting of exploiting the knowledge of distributed system elements to direct the
learning behavior of the whole system [9]. Eventually, the pattern structure and
pattern behavior needs to be concretized towards the active structure and finally to
the construction and component structure of the system.

Basement
Catalogue of Active Patterns

ConctetiZatlon
of Knowledge Q^B

Conoretiiation
of Bahawor ^ c) ^

Conctetization
of Stracttii^ Oc^g2>

Reflection Exploitation Interaction Exploration

Fig. 6. Catalogue of Active Patterns

The catalogue of active patterns has been applied to several application scenarios
of intelligent mechatronic systems, e. g. to shuttles driving on tracks by
implementing the active patterns of Exploration and Interaction [10] or to the
suspension-/tilt-module of a shuttle using the active patterns of Interaction and
Exploitation [11]. The following chapter depicts the application of active patterns on
the Networked Mechatronic System layer to design collaborative behavior of shuttles
crossing a switch.

Active Patterns for Self-Optimization 153

4 Validation - Collaborative Behavior of Shuttles Crossing a
Switch

The application scenario of crossing a switch is as follows (Fig. 7): A Networked
Mechatronic System of two convoys CA and CB, each consisting of several
autonomous shuttles A; und Bj, approach a switch. The passage of a single shuttle
shall be designed such that the approaching convoys CA and CB are merged to a
virtual convoy Cy. The shuttles shall optimize themselves autonomously and under
restricted or no prior knowledge about an optimum behavior according to their own
targets after each successfully completed crossing procedure. The whole scenario is
split up into three zones - a decision, an execution and a learning zone.

Decision Zone ; Execution Zone
Determination of targets ' Adaptation of oorrent behavior j

Learning Zone
Adaptation of tijture behavior

Actual Convsyt
C „ = (A „ B „ A „ A „ B ; , ...)

Fig. 7. The application-scenario of crossing a switch

In the course of the early conception stage, a function hierarchy is built up (Fig.
8). Let us illustrate the increasing concretization at the function of Determination of
Sequence which shall define the passage sequence of shuttles. Based on prior design
experience [11] this function can be realized by implementing the APso Exploitation.
The pattern structure of the APgo consists of two system-elements - the Knowledge-
Carrier and the Knowledge-User. The pattern behavior can be specified by a
statechart which specifies the adaptation process by a neuro-fuzzy method [12]. The
APso is concretized towards the active structure as follows. Every shuttle can be a
Knowledge-Carrier because of its implicit experience about the determination of
sequence generation with the help of neuro-fuzzy methods. The master-shuttle
represents the Knowledge-User because it determines the passage-sequence for the
remaining shuttles. Eventually, the adaptation of the behavior is detailed by a
statechart which specifies possible adaptation processes for the generation of a
virtual convoy Cv - here the adaptation process from an initial state So - head-
shuttles Ai and Bj right ahead of the switch - to the target-states Si := Cv=(Ai,Bi)

154 Andreas Schmidt

that is Ai drives first, afterwards Bi
first, then A|.

as well as S2 := Cv=(Bi,Ai) that is Bj drives

Legend
i - i Function

CZ^ Solutionpattem Reference to

C 3 SetofSystemelements "—-" ' ' " " ' " "
* ~ ^ /~v SystemeSement/
j 3 ^ } t-ogical Grouping Active Structure
- ^ Infomiationsllow t-D Methods

Reiation of Compliance O Behavior

Fig. 8. Concretization in Design - Application Scenario of Crossing a Switch

In particular, the APso Interaction specifies how the shuttles communicate with
each other and determines the master-shuttle (Fig. 9). The APso Exploration designs
how target states such as Si or S2 can be determined or newly created. A neuro-fuzzy
system takes input-variables such as the velocity of shuttles Av = (VM - VBI) and
arrival-time ATA = (tAi - tei) at the switch to assign passage-classes such as Ci :=
(Al-Bl) = Master-Shuttle drives first and class C2 := (Bl-AI) = Master-Shuttle
drives second. Because of the inherent uncertain and vague knowledge about
environment- and system-states, fuzzy-variables are introduced, e. g. Av = (slower,
equal, faster) and ATA = (earlier, equal, later). Fuzzy-rules realize the assignment of
passage-classes, e. g. If(Av = slower and ATA = later) Then (Al - Bl). The APso
Exploitation allows the system to start from initial knowledge and initial rules in
system-state So for setting up the neuro-flizzy system. Once a target state such as Si
is reached, APso Reflection specifies, how the experience that was accumulated
during the adaptation process can lead to adapted fuzzy-sets and new rules. This is
done by evaluating the degree of fulfillment of committed targets such as minimum
distance between shuttle Admin and maximum energy consumption E âx and
consequently adapting the weights of the neural network of the neuro-fuzzy system
leading to adapted fuzzy-sets and possibly to new fuzzy-rules.

Active Patterns for Self-Optimization 155

Fig. 9. Neuro-Fuzzy Learning with the exploitation of A-Priori Knowledge

5 Conclusion and future work

This article has proposed a schema called Active Patterns for Self-Optimization
in order to design self-optimizing mechatronic systems in the early design stage. A
set of four active patterns established the basis for the specification of a catalogue of
patterns along the dimensions of detailing, combining and concretizing. The design
approach was validated for a networked mechatronic system namely the crossing of
a switch by convoys which consist of individually and autonomously acting shuttles.
The pattern behavior was implemented according to the biologically inspired
technique of neuro-fuzzy learning. Altogether it was shown, that active patterns for

156 Andreas Schmidt

self-optimization constitute an applicable approach for the design of intelligent
mechatronic systems in the early design stages.

In order to cope with functional demands that arise from endogenous needs of
agents as opposed to given external targets, future research will deal with the
extension of active pattern schema towards cognitive behavior. Also, the pattern
catalogue will be extended as new application scenarios of intelligent mechatronic
systems demand a detailing and concretization of pattern structures and behavior.

6 References

1. Frank, U.; Giese, H,; Klein, F.; Oberschelp, O.; Schmidt, A.; Schulz, B.; Vocking, H.;
Witting, K.; Gausemeier, J. (Hrsg.): Selbstoptimierende Systeme des Maschinenbaus -
Defmitionen und Konzepte. HNI-Verlagsschriftenreihe Band 155, Paderbom, 2004

2. Liickel, J.; Hestermeyer, T.; Liu-Henke, X.: Generalization of the Cascade Principle in
View of a Structured Form of Mechatronic Systems. lEEE/ASME International Conference
on Advanced Intelligent Mechatronics (AIM 2001), Villa Olmo ; Come, Italy, 2001

3. New Railway Technology Paderbom (NBP) - A Research Initiative for the Improvement
of the Attraction of the Railway-System, http://nbp-www.upb.de, 2005

4. Daenzer, W. F.; Huber, F.: Systems Engineering - Methoden und Praxis. 8. verbesserte
Auflage; Verlag Industrielle Organisation; Zurich, 1994

5. Pahl G.; Beitz W.; Feldhusen, J.: Engineering Design - A Systematic Approach. 3. ed..
Springer-Verlag, Berlin 2006

6. Verein Deutscher Ingenieure (VDI); Design Methodology for Mechatronic Systems. VDI
Guideline 2206, Beuth Verlag, Berlin, 2004

7. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Pattems - Elements of Reusable
Object-Oriented Software. Addison-Wesley, Milnchen, 1996

8. Berenji, N .R., Khedar, P.: Learning and Tuning Fuzzy Logic Controllers through
Reinforcements. In: IEEE Trans. Neural Networks, No. 3, IEEE Press, Piscataway, NJ,
USA 1992, pp. 724-740

9. Santamaria, J. C: Learning Adaptive Reactive Agents. Doctoral Thesis, College of
Computing, Georgia Institute of Technology, Atlanta, Georgia, 1997

10. Gausemeier, J.; Frank, U.; Giese, H.; Klein, F.; Schmidt, A.; Steffen, D.; Tichy, M.: A
Design Methodology for Self-Optimizing Systems. In: Contributions to the 6*
Braunschweig Conference of Automation, Assistance and Embedded Real Time Platforms
for Transportation (AAET2005), Feb. 16* and 17* 2005, Technical University of
Braunschweig, GZVB, 2005, Vol. II, pp. 456-479

11. Gausemeier, J.; Frank, U.; Schmidt, A.; Steffen, D.: Towards a Design Methodology for
Self-Optimizing Systems. In: ElMaraghy, H.; EMaraghy, W. (Hrsg.): Advances in Design,
Springer Verlag, 2006, pp. 61-71

12. Koch, M; Kleinjohann, B.; Schmidt, A.; Scheideler, P.; Saskevic, A.; Gambuzza, A.;
Oberschelp, O.; Hestermeyer, T.; Miinch, E.: A Neuro-Fuzzy Approach for Self-
Optimizing Concepts and Structures of Mechatronic Systems. In: Chu, H.-W.; Savoie, M.;
Sanchez, B.: Proc. of the International Conference on Computing, Communications and
Control Technologies (CCCT2004), Austin, USA, 14.- 17.08.2004, pp. 263-268

Acute Stress Response for Self-optimizing
Mechatronic Systems

Holger Giese-" ,̂ Norma Montealegre^, Thomas Miiller^, Simon Oberthiir^, and
Bernd Schulz^

^ Software Engineering Group, University of Paderborn, Germany
•̂ Heinz Nixdorf Institute, University of Paderborn, Germany

3 Power Electronics and Electrical Drives, University of Paderborn, Germany

Abst rac t . Self-optimizing mechatronic systems have the ability to ad
just their goals and behavior according to changes of the environment
or system by means of complex real-time coordination and reconfig
uration in the underlying software and hardware. In this paper we
sketch a generic software architecture for mechatronic systems with self-
optimization and outline which analogies between this architecture and
the information processing in natural organisms exist. The architecture
at first exploits the ability of its subsystems to adapt their resource
requirements to optimize its performance with respect to the usage of
available computational resources. Secondly, the architecture achieves,
inspired by the acute stress response of a natural being, that in the
case of an emergency it makes all recources available to address a given
threat in a self-coordinated manner.

1 Introduction

The next generation of advanced mechatronic systems is expected to behave
more intelligently than today's systems. They adjust their goals and behav
ior according to changes of the environment or system and build communities
of autonomous agents. The agents exploit local and global networking to en
hance their functionality (cf. [17]). Such mechatronic systems will thus include
complex real-time reconfiguration of the underlying software and hardware as
well as complex real-time coordination to adjust their behavior to the changing
system goals leading to self-adaptation (or self-optimization) [15, 10, 12, 5].

As advanced mechatronic systems usually consist of a complex network of
concurrently running components which are also called (software) agents, we
have developed a general architectural model of its components the so-called
Operator-Controller Module (OCM) [9]. Within a single autonomous mecha
tronic system, a hierarchy of OCMs is employed to define the strictly hierarchi
cal architecture. In contrast, at the top level the OCMs are free to connect to
their peers to estabhsh the required coordination. In this paper, we will outhne
which analogies between our architectural approach and related phenomena in
nature exists but also where are the limits of these analogies.

Please use the following format when citing this chapter:

Giese, H., Montealegre, N., Miiller, T., Oberthiir, S., Schulz, B., 2006, in IFIP International Federation for Information

Processing, Volume 216, Biologically Inspired Cooperative Computing, eds. Pan, Y, Rammig, F., Schmeck, H., Solar, M.,

(Boston; Springer), pp. 157-167.

158 H. Giese, N. Montealegre, T. Miiller, S. Oberthiir, B. Schulz

While the proposed OCM architecture is mainly driven by the requirements
for self-optimizing mechatronic behavior, it also shows some similarities with
several proposed layered architectures. [8] suggests that a two level architecture
with a low-level execution and a higher-level control layer represents a gen
eral pattern present in natural as well as artificial organic systems. A related
practical approach explained in [14] is the Observer/Controller architecture for
Organic Computing systems. Similar to the OCM it is inspired in the brain stem
as low level structures which reacts to sensory inputs and the limbic system as a
high-level structure which observes and manipulates the first one. In contrast to
this work, the OCM also supports higher cognitive behavior which matches the
planning layer of the Touring Machines [4] (autonomous agents with attitudes)
and tries to reach the goal of a general model for autonomous cognitive agents
as stated in [16], which explains the action selection paradigm of mind for con
scious software agents and how the most relevant behavior/action is selected
and executed, supporting approach concerning to the method for emergency
situations described below.

Following support for the OCM architecture exist: The model-driven de
velopment with MECHATRONIC U M L [2] and block diagrams is provided by
the CASE tool Fujaba and CAE tool CAMeL. Additionally, methods for ver
ification of the real-time behavior, excluding adverse effects due to complex
reconfiguration in hierarchical OCM architectures, [7, 6] exists. The MECHA
TRONIC UML approach also permits to specify resource-aware OCMs which
can adapt their resource consumption in form of different operational profiles
[1]. These resource-aware OCMs are further supported by a specific extension of
the real-time operating system DREAMS [11]. It optimize the system usage of
the computational resources at run-time. This is similar to the conscious mind
which devotes its attention and efforts for different control behavior so that the
result is optimized.

Concerning dependability, the existing techniques [7, 6] require that haz
ards or detected faults are explicitly handled within the OCM hierarchy. Such
an explicit handling has to abstract drastically from the different failure configu
rations of its subsystems, otherwise the resulting combinatoric explosion would
render the development prohibitively expensive. To overcome this limitation
and better handle unanticipated faults, we developed a generic self-organizing
scheme how an self-optimizing mechatronic system can exploit the ability of
its parts to adapt their resource requirements. The scheme is inspired by the
"acute stress response" of a natural being (cf. [3]). It enables that in the case
of an emergency all available resources are assigned in such a manner that the
threat can be addressed with priority.

The structure of the paper is as follows: We start with an example of a
self-optimizing mechatronic system in Section 2 and then introduce our general
architectural model for self-optimizing mechatronic systems, its modehng, and
their ability to adapt their resource consumption using this example. Then,
the safety-driven self-organizing resource management is outlined in Section 3
before we conclude the paper.

Acute Stress Response for Self-optimizing Mechatronic Systems 159

2 Example and Modeling

As a concrete example, we use the Paderborn-based RailCab research project^.
The modular railway system combines sophisticated undercarriages with the
advantage of new actuation techniques as employed in the Transrapid^ to in
crease passenger comfort, enabling efficient transportation at a high average
speed, and (re)using of the existing railway tracks. We will use in the following
a specific element of the motion control as a running example.

Fig. 1. Structure of the Driving Module with operating point assignment

Fig. 1 shows the structure of driving module of the linear motor of the
railway system. The driving module consists of doubly fed linear drive with
magnetic active coils at the track and at the vehicle. The magnetic fields of
the coils are supported by the electrical currents, which are predetermined with
their frequency by the operating point assignment. The product of the current
defines the thrust 1 and with its frequency it also gives the transferred power
to the vehicle 2. Thence, the operating point assignment of the linear drive is
pivotal for the proper work of the whole vehicle. Without a suitable operating
point assignment, a safe and dependable work of the railway system is not
possible.

FM = KMhdhq (1) PB = 3(7r/i
LhN2

Wid-R2ll,) (2)

A simple operating point assignment can be handled by a full powered pri
mary at the track. This fix operation point leads to an inefficient operation of
the system. To improve this efficiency the operating point assignment can be
done by a simple efficiency-optimal algorithm outlined in [13]. The concept of

^ http://www-nbp.upb.de/en
^ http://www.transrapid.de/en

160 H. Giese, N. Montealegre, T. Miiller, S. Oberthiir, B. Schulz

self-optimizing in mechatronic systems allows a more powerful operating point
assignment [18]. This self-optimizing operating point assignment enables the
system self-adapting to the system objectives as a response to changes in the
surrounding of the system.

In case of a low charge state at energy storage system in the vehicle, the
losses in the vehicle became more important than the efficiency of the whole sys
tem. Otherwise, the efficiency of the whole system can be maximized while the
power transfer is not in the focus of the operating point assignment. Moreover,
the importance of the power transfer to the vehicle depends on the expected
consumption and distance profile of the track.

2.1 A r c h i t e c t u r e

As illustrated by the example, even the control software of the Driving Module
results in a complex network of concurrently running components. Therefore
we suggest to structure the software architecture using Operator-Controller
Modules (OCM) as depicted in Fig. 2 (cf. [9]) as basic building blocks of a
hierarchy.

Linearmotor

Fig. 2. Structure of the Operator-Controller-Module for operating point assigment

Acute Stress Response for Self-optimizing Mechatronic Systems 161

The OCM suggests the following internal structuring: (1) On the lowest level
of the OCM, there is the controller which realizes the currently active control
strategy, processes measurements, and produces the control signals. This part
consists in the example of the drive control for the linear drive. (2) The reflective
operator, in which monitoring and controlling routines are executed, monitors
the controller. In the example, at this level the transfer of the reference value
for the operating point assignment as well as fault detection and management is
done. (3) The cognitive operator is trying to improve the behavior of the OCM
in soft real-time. The calculation and optimization of new reference values in
the example OCM are located here.

The OCM defines the so called micro architecture of the system somehow
inspired by the organization of the information processing as found in more
advanced animals. The behavior located in the cognitive operator relates to the
conscious decisions and planning. The reflective operator more or less fits to the
non conscious behavior which ensures that for a specific situation appropriate
reflexes and control strategies are activated. However, in contrast to natural
organisms the proposed architecture suggest to separate these levels in each
OCM of the hierarchy while in information processing of an organism this sepa
ration only exists for the whole organism. Another distinction is that in nature
evolution ensures that unsafe behavior is eliminated while in our systems even
the loss of a single individual due to such an "experiment of life" could not
be justified. Therefore, guarantees must be provided using, for example, formal
verification techniques (cf. [7, 6]).

2.2 M o d e l i n g

During the implementation of the software for a Hardware-in-Loop test bed,
we modeled the operating point assignment module as an OCM. We peresent
in Fig. 3 a simplified state chart, which depicts the parallel processing of the
different layers in the cognitive- and reflective operator as well as the controller.

The controller has to support the motion Control of the vehicle at all cir
cumstances. The reflective operator at first has to support the critical tasks of
Analyzing the advisability of the optimized set values for the controller. In the
parallel Adjust state, the reflective operator remains in the Normal state and
provides optimized set values to the controller as long as suitable operating
points set values where available. Otherwise, in case of inappropriate operating
point set values, which can be the result of an unexpected thrust demand or
quick changing parameters of the motor, the Adjust state of the reflective opera
tor will switch over to the Emergency state. In parallel, the Parameter Estimation
state is required for parameter estimation of the motor parameters to enable the
cognitive operator to make a suitable optimization. In the cognitive operator of
the OCM suitable objectives for the next optimization cycle are elected in the
Pre-Adjust state. At the Optimization state, the multi objective optimization is
done and afterwards the pareto point selection follows in the Decision Making
state. The selected operating point for a discrete time is then employed in the

162 H. Giese, N. Montealegre, T. Miiller, S. Oberthiir, B. Schulz

' OuLiiitU! Cu-il'S kr r. odj

1 C'_J I KJf ii,-i.t ISO

\

)
Pl" l ' >l 'iV."i J ^ '

fi(»".C.I.i' J , " 'P'O

. ^

' I ' . I ^ • • ' " ' ' ' ^ ' ' ' * ' j

i[ll/'i^LlJ
I r ^ T — 1 ^

\

7

Fig. 3. States and profiles of the Operating Point Assigment OCM

Path Following state to calculate the selected operating point for the next few
seconds. This calculated path will be send the reflective operator and a review
of the calculated optimization results in the Wait and Evaluate state is used to
decide whether a new optimization cycle is required or whether it is sufficient
to continue the path jumping to the Path Following state.

2.3 R e s o u r c e M a n a g e m e n t

The resource-aware OCM becomes possible due to our RTOS named DREAMS
(Distributed Real-time Extensible Application Management System) which
provides a special resource manager [11] (Flexible Resource Manager - FRM).
DREAMS is tailored to the special demands of the dynamic class of self-
optimizing applications. The manager tries to optimize the resource utiliza
tion at run-time. The optimization includes a safe overallocation of resources,
by putting resources that are held back for worst-case szenarios by OCMs at
other OCMs disposal. The interface to the FRM is called Profile Framework.
By means of the Profile Framework the developer can define a set of profiles per
application. Profiles describe different service levels of the application, including
different quality and different resource requirements.

All states belonging to one profile build the state space that can be reached
when the profile is active. In Fig. 3 the inclusion of the states in profiles is
depicted by assigning the related profile numbers. The required resources of
the controller are always the same if the system is in operation. Therefore,
the Control state must be in all profiles. The resource requirements of the
reflective operator in contrast vary depending on the current profile. In the
"Self-Optimizing min/max" profiles all three parallel states are active while in
"Fail-Operation min/max" they are subsequently disabled. The cognitive opera-

Acute Stress Response for Self-optimizing Mechatronic Systems 163

tor can be switched off if required. Therefore, the states Pre-Adjust, Optimizing,
and Decision Making, which require high calculation-resources are only sup
ported in the "Self-Optimizing max" profile. On the other hand the Path Fol
lowing and Wait and Evalute state, which needs just less resources, are also in
the "Self-Optimizing min" proiile. None of this states are present in any of the
"Fail-Operation min/max" profiles. This reflects the fact that the decoupling of
the OCM concept permits to suspend the complete cognitive operator at any
time. A recovering of the cognitive features will leads to possible restart of the
optimization cycle.

The mentioned profile information can be generated out of the state chart
as described in detail in [1].

3 Safety driven resource management

The different profiles can be assigned to specific emergency categories using
a generic monitoring concept for self-optimizing systems. We developed this
concept originally in order to protect OCMs systematically against hazards or
faults. These hazards or faults might result from their cognitive self-optimizing
behavior themselves, but self-optimizing behavior can also support the reallo
cation of resource to handle threats as outlined in the following.

// ///

Fig. 4. Monitoring Concept for self-optimizing Systems

We have integrated the monitoring in the reflectoring operator of the OCM.
The monitoring concept is a guideline, when and how self-optimization is rea
sonable to use. Furthermore it describes which emergency categories should be
supported and when a switching between them should be initiated to avoid
major consequences (cf. Fig. 4) and which characteristics a profile should fulfill
in order to be included in each category. The monitoring concept distinguishes
four different emergency categories:

I The system operates regularly and uses the self-optimization for the major
system objectives; e.g. comfort and energy efficiency if useful. All regular
profiles fall into this category, in our example "Self-Optimizing max/min".

I I A possible threat has been detected and the self-optimization is not only used
to optimize the behavior but also reach system states, which are considered
to be safer than the current one. We describe in the next section our na
ture inspired method which ensures that the system can in this case provide

164 H. Giese, N. Montealegre, T. MuUer, S. Oberthiir, B. Schulz

more resources to enable more efficient countermeasures. In our example the
Analysis substate of the reflective operator will detect this problem and only
the profiles "Self-Optimizing max/min" and "Fail-Operation max" fit to this
category.

IIIA hazard has been detected that endangers the system. Fast and robust
countermeasures, like a reflex, are performed in the reflective operator in hard
real-time in order to reach a safer state (I or II). Depending on the specific
OCM, profiles where the cognitive reactions runs in the background may
still be employed, profiles with additional functionality may be employed, or
only robust profiles without self-optimization are used. The "Fail-Operation
min/max" profiles fit into this category, which use robust standard parameter
settings to get back to a safe operational behavior.

IVThe system is no longer under control; the system must be immediately
stopped or a minimal safe-operational mode must be warranted, to minimize
damage. In rare cases, cognitive reactions in the OCM may be employed in
order to rescue the system if no fail-safe or minimal fail-operational behavior
is possible. In our example the "Fail-Operation min" profile may be employed
during the emergency brake of the system.

3.1 Emergency categories and the a c u t e s t r e s s r e s p o n s e

The American physiologist Walter Cannon published the "Fight-or-flight "-
Theory in 1929 [3], also known as acute stress response. It describes the re
action of humans and animals to threats. In such "stress" situations specific
physiological actions are taking place by the sympathetic nervous system of the
organism as an automatic regulation system without the intervention of con
scious thought. For example, epinephrine a hormone is released which causes
the organism to release energy to react on the threat (fight or flight).

We imitate this behavior inside our OCMs with support of our resource
management of the RTOS. The idea is, when an OCM of the system detects
a threat for the system the agent releases virtual epinephrine. This distributed
epinephrine force non-critical OCMs in a profile with lower resource consump
tions to free resources and thus permits the agent to hanlde the threat more
appropriatley by switching in a profile of the emergency category II.

Concrete the epinephrine carries the information how much additional re
sources the OCM, which released the epinephrine, requires to activate his opti
mal profile to handle the threat (eg. figure 3). All OCMs are sorted according
their safety critical nature. As the blood system in an organism, our resource
manager distributed the epinephrine to the OCMs. Starting with the OCMs
with the lowest safety level, the epinephrine is injected to this OCMs and it can
react on the epinephrine by switching into a special profile with lower resource
requirements. If the OCM is only responsible for comfort it could for example
switch to a "Off" profile with no or minimal resource requirements. The OCM
"consumes " the epinephrine, this means the information inside the epinephrine
how much resources are still required is updated. Then the resources manager

Acute Stress Response for Self-optimizing Mechatronic Systems 165

distributes the updated epinephrine to the next OCM, even if no resources are
required anymore, so every OCM has information about the threat and can
react accordingly. This procedure has the advantage that we achieve a faster
self-organized reallocation than in the case of the regular resource optimization
of the RTOS.

In practice the switching to lower proviles of none or low critical OCMs is
done, after collecting the information from all OCMs. This is done to ensure that
all profile switches can be realized. The complexity of this process is linear to
the number of OCMs. The reaction of the OCMs to the epinephrine (consuming
it) is specified to be done in a short, constant time. The methodology to derive
the profiles ensures that the basic safety countermeasures of the OCM to react
to threats are always inchided in a current profile. So the countermeasures
can be initiated without any delay, as no additional resources are required,
while more advanced responses, which require additional resources can only be
employed if the required additional resources are made available due to the
stress response. If higher emergency categories such as II or IV are present, the
outlined mechanism will propagate the resource demands in a similar manner
considering the emergency category into account.

4 Conclusion

The presented generic OCM software architecture borrows the distinction be
tween different levels of information processing present in natural organisms to
handle better the complexity of mechatronic systems with self-optimization. In
addition, a generic monitoring concept for each OCM and its self-coordination
via the RTOS have been presented which emulate the acute stress response of a
natural beings in the case of an emergency such that available resources are best
allocated to address a given threat. The outlined self-coordinated adaptation
of the system promises to enhance the dependability of systems as resources
are employed more focused. It promizes to be also helpful for unanticipated
problems as the investment of more resources to the control of misbehaving
mechatronic subsystems is in many cases sufficient to compensate smaller sys
tematic failures.

References

1. S. Burmester, M. Gehrke, H. Giese, and S. Oberthiir. Making Mechatronic Agents
Resource-aware in order to Enable Safe Dynamic Resource Allocation. In B. Geor-
gio, editor, Proc. of Fourth ACM International Conference on Embedded Software
2004 (EMSOFT 2004), Pisa, Italy, pages 175-183. ACM Press, September 2004.

2. S. Burmester, H. Giese, and M. Tichy. Model-Driven Development of Reconfig-
urable Mechatronic Systems with Mechatronic UML. In U. Assmann, A. Rensink,
and M. Aksit, editors. Model Driven Architecture: Foundations and Applications,

166 H. Giese, N. Montealegre, T. Miiller, S. Oberthiir, B. Schulz

volume 3599 of Lecture Notes in Computer Science, pages 47-61. Springer Verlag,
Aug. 2005.

3. W. B. Cannon. Bodily Changes in Pain, Hunger, Fear and Rage: An Account of
Recent Research Into the Function of Emotional Excitement. Appleton-Century-
Crofts, 1929.

4. I. A. Ferguson. Touringmachines: Autonomous agents with attitudes. IEEE Com
puter, 25(5):51-55, 1992.

5. U. Frank, H. Giese, F. Klein, O. Oberschelp, A. Schmidt, B. Schulz, H. Vocking,
and K. Witting. Selbstoptimierende Systeme des Maschinenbaus - Definitionen
und Konzepte. Number Band 155 in HNI-Verlagsschriftenreihe. Bonifatius GmbH,
Paderborn, Germany, first edition, Nov. 2004.

6. H. Giese, S. Burmester, W. Schafer, and O. Oberschelp. Modular Design and Ver
ification of Component-Based Mechatronic Systems with Online-Reconfiguration.
In Proc. of 12th ACM SIGSOFT Foundations of Software Engineering 2004 (FSE
2004), Newport Beach, USA, pages 179-188. ACM Press, November 2004.

7. H. Giese, M. Tichy, S. Burmester, W. Schafer, and S. Flake. Towards the Com
positional Verification of Real-Time UML Designs. In Proc. of the 9th European
software engineering conference held jointly with 11th ACM SIGSOFT interna
tional symposium on Foundations of software engineering (ESEC/FSE-11), pages
38-47. ACM Press, September 2003.

8. A. Herkersdorf. Towards a framework and a design methodology for autonomic in
tegrated systems. In M. Reichert, editor. Proceedings of the Workshop on Organic
Computing, 2004.

9. T. Hestermeyer, O. Oberschelp, and H. Giese. Structured Information Process
ing For Self-optimizing Mechatronic Systems. In H. Araujo, A. Vieira, J. Braz,
B. Encarnacao, and M. Carvalho, editors, Proc. of 1st International Conference
on Informatics in Control, Automation and Robotics (ICINCO 2004), Setubal,
Portugal, pages 230-237. INSTICC Press, Aug. 2004.

10. D. J. Musliner, R. P. Goldman, M. J. Pelican, and K. D. Krebsbach. Self-Adaptive
Software for Hard Real-Time Environments. IEEE Inteligent Systems, 14(4),
July/Aug. 1999.

11. S. Oberthiir and C. Boke. Flexible resource management - a framework for self-
optimizing real-time systems. In B. Kleinjohann, G. R. Gao, H. Kopetz, L. Klein-
johann, and A. Rettberg, editors, Proceedings of IFIP Working Conference on
Distributed and Parallel Embedded Systems (DIPES'04), pages 177-186. Kluwer
Academic Publishers, 23 - 26 Aug. 2004.

12. P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson, N. Med-
vidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf. An Architecture-Based
Approach to Self-Adaptive Software. IEEE Intelligent Systems, 14(3):54-62,
May/June 1999.

13. A. Pottharst. Energieversorgung und Leittechnik einer Anlage mit Linearmotor
getriebenen Bahnfahrzeugen. Dissertation, University of Paderborn, Powerelec-
tronic and Electrical Drives, Dec. 2005.

14. T. Scholer and C. Miiller-Schloer. An observer/controller architecture for adaptive
reconfigurable stacks. In M. Beigl and P. Lukowicz, editors, ARCS, volume 3432
of Lecture Notes in Computer Science, pages 139-153. Springer, 2005.

15. J. Sztipanovits, G. Karsai, and T. Bapty. Self-adaptive software for signal process
ing. Commun. ACM, 41(5):66-73, 1998.

Acute Stress Response for Self-optimizing Mechatronic Systems 167

16. J. F. Vincent Decugis. Action selection in an autonomous agent with a hier
archical distributed reactive planning architecture. In Proceedings of the second
international conference on Autonomous agents, pages 354-361. ACM Press, 1998.

17. M. Wirsing, editor. Report on the EU/NSF Strategic Workshop on Engineering
Software-Intensive Systems, Edinburgh, GB, May 2004.

18. K. Witting, B. Schulz, A. Pottharst, M. Dellnitz, J. Bocker, and N. Prohleke. A
new approach for online multiobjective optimization of mechatronical systems.
Accepted for Int. J. on Software Tools for Technology Transfer STTT (Special
Issue on Self-Optimizing Mechatronic Systems), 2006.

The Self Distributing Virtual Machine (SDVM):
Making Computer Clusters Adaptive

Jan Haase, Andreas Hofmann, and Klaus Waldschmidt

Technische Informatik
J. W. Goethe Universitat

Post Box 1119 32, 60054 Frankfurt a. M., Germany
{h.aase|aliof mann|waldsch}9ti. informatik. uni-f rankf u r t . de**

Abs t rac t . The Self Distributing Virtual Machine (SDVM) is a middle
ware concept to form a parallel computing machine consisting of a any
set of processing units, such as functional units in a processor or FPGA,
processing units in a multiprocessor chip, or computers in a computer
cluster. Its structure and functionality is biologically inspired aiming
towards forming a combined workforce of independent units ("sites"),
each acting on the same set of simple rules.
The SDVM supports growing and shrinking the cluster at runtime as
well as heterogeneous clusters. It uses the work-stealing principle to
dynamically distribute the workload among all sites. The SDVM's en
ergy management targets the health of all sites by adjusting their power
states according to workload and temperature. Dynamic reassignment
of the current workload facilitates a new energy policy which focuses on
increasing the reliability of each site.
This paper presents the structure and the functionality of the SDVM.

1 Introduction
In the past, the user's increasing demand for capacity and speed was usually
satisfied by faster single processors. Nowadays the increase in clock rates seems
to have slowed down. The exploitation of parallelism is one way to enhance
performance in spite of stagnating clock speeds. Its use isn't limited to the
field of supercomputers; nowadays even Systems-on-Chip(SoC) with a lot of
processors, so called MPSoCs, are in production.

Task scheduling and data migration for parallel computers, especially if
embodied as a cluster of processing units, are complex problems if solved cen
tralized. The use of biologically-inspired mechanisms can reduce complexity
without sacrificing performance. The properties of biological systems like self-
organization, self-optimization and self-configuration can be used to ease pro
gramming and administration of parallel computing clusters. These properties
can be implemented efficiently using a paradigm common in complex biological
systems: the collaboration of autonomous agents.

Parts of this work have been supported by the Deutsche Forschungsgemeinschaft
(DFG).

Please use the foil owing format when citing this chapter:

Haase, X, Hofinann, A., Waldschmidt, K., 2006, in IFIP International Federation for Information Processing, Volume 216,

Biologically Inspired Cooperative Computing, eds. Pan, Y., Rammig, F., Schmeck, H., Solar, M., (Boston: Springer), pp.

169-178.

170 Jan Haase, Andreas Hofmann, and Klaus Waldschmidt

Using biologically inspired techniques to implement a parallel computing
system is only the means to the end in meeting user requirements. With the in
troduction of parallel computing, speed is not the only property which users are
interested in; others too have come to the fore. In the following, several of those
properties are presented. These properties focus on MIMD computer clusters.
Such a cluster consists of an arbitrary number of independent processing units
called sites which are connected using any kind of network.

Despite the performance of parallel computers the computations may take
serveral days to finish. For large scale machines like the ASCI-Q machine, the
mean time between failures (MTBF) for the whole system is estimated to be
mere hours [1]. Thus system stability even in the face of failure of single compo
nents is an important goal. Parallel systems must therefore detect failures and
intercept them transparently and unnoticed by the user. Presently, a system
won't be able to repair itself physically, but the other sites should adapt to the
changed environment and take over the work from the faulty site. This could
be termed "self healing" of a system.

A main cause for the limited use of parallel computers lies in the challeng
ing programmability: For single processors, scheduling in time is sufficient, but
for multiprocessor systems, the spatial dimension has to be considered, too.
Spatially and timely scheduling of the chunks of a program is a non-trivial
optimization problem for the programmer, especially as the parallelism of an
application can vary greatly over execution time and depends on the input data.
Therefore a possible solution would be to relieve the programmer of the spa
tial scheduling at all, and let the system decide it at runtime using convenient
heuristics automatically. The resulting transparent parallelization is similar to
the goal of self-optimization, known from the subject of organic computing [2].

Experience shows that the performance demands increase over time. To
be cost-effective, it suggests itself to prolong the life-span of a system instead
of replacing it with a new system every few years. In the case of a parallel
system this can be done by adding new processors or computers to increase its
processing power. A parallel computing middleware should therefore support
scalability. The benefit even increases if the growing and shrinking of the system
is possible at runtime to cope with short-time processing power demand peeks.

In the beginning parallel systems were implemented as dedicated clusters.
These days they more and more consist of clusters of workstations, multi
processor embedded systems, or even multicore FPGA-based devices. Thus en
vironmental parameters change frequently and sometimes fast. Configuration
by hand of such a dynamically changing system is hard or even impossible.
Thus it should configure itself autonomously. Concerning parallel systems, for
well-founded configuration decisions the sites must be informed about the other
sites' load, speed, etc., automatically. This can be denominated as the goal of
self-configuration.

In section 2, the concept of the SDVM and its underlying mechanisms are
described. After a list of some speedup results in section 3, this paper closes

The SDVM: Making Computer Clusters Adaptive 171

with a conclusion in section 4. The SDVM prototype is implemented in C + +
and its complete source code is freely downloadable [3].

2 The SDVM

The Self Distributing Virtual Machine (SDVM) is a middleware to form an
adaptive parallel system which is applicable to different granularities like func
tional units on an FPGA, processors in a multiprocessor SoC, or a cluster of
customary computers(see Figure 1). The SDVM is currently implemented as a
prototype in software running as Linux daemons on a workstation cluster.

site 1

site 2

site n
networl< <

Fig. 1. The SDVM connects processing units (sites) to form a cluster, regardless of
the topology of the connection network.

The SDVM actually implements several of the concepts inspired by biolog
ical systems, namely the cooperation of somewhat autonomous systems, self-
controlled adaptivity to changing environments (as the size of the cluster or its
heterogeneity) and decentralization of task scheduling. The sites that build the
cluster are basically equal with no master or fixed division of functions. Fur
thermore, the SDVM supports self-healing by the use of checkpoints, to ensure
proper program execution irrespective of failing cluster members.

2.1 T h e concept

The SDVM can be seen as a dataflow machine augmented with a distributed
shared memory: An application to be executed by the SDVM is cut into several
chunks of code, the microthreads. Each microthread needs certain parameters
when run, therefore these parameters have to be collected prior to execution
of the microthread. The data container collecting the parameters is called the
microframe (see Figure 2).

target addresses

microframe microthread

Fig. 2. Microframe and Microthread

A microframe is filled over time with the parameters it awaits. When all pa
rameters have been received, the corresponding microthread is executed using
these parameters and in the process calculates results needed by other mi-
croframes as parameters. Microframes can travel throughout the cluster while

172 Jan Haase, Andreas Hofmann, and Klaus Waldschmidt

being filled. As the corresponding inicrothread is only needed when they are
actually executed, the microthread is not included in the microframe to lessen
bandwidth consumption when moving from one site to another.

While a microframe is being filled, the SDVM has not yet decided which
site will execute this microframe with its corresponding microthread. When
a site autonomously decides to execute a microframe locally, it finally needs
the corresponding microthread which is then read from the local code cache
or copied over the network. In this way the application itself (in terms of its
microthreads) spreads automatically throughout the cluster over time—the sites
will request just what they need and when they need it.

Microframes are not the only way to exchange data between parts of a
program. The entirety of the SDVM provides a distributed shared memory
(DSM) like SCI [4] and FLASH [5]. SDVM-programs can allocate and use this
memory just like heap memory is used in C / C + + . The memory addresses
pointing to allocated memory regions can be passed as microframe parameters
between microthreads. This global memory consists of the sum of all sites'
memories. If a site is shut down (shrinking the cluster) the data stored in its
local part of the global memory is pushed out to other sites before.

Any site which has nothing to do will ask other sites for work and will in
return get a microframe which is ready for execution, if available. Any new site
joining the cluster will just notice that its work queue is empty and act like
any site which is out of work. In this way a site autonomously provides itself
with work. This is called the work stealing principle (also referred as "receiver-
initiated load balancing"), as opposed to the work sharing principle ("sender-
initiated load balancing") where overloaded sites try to push away work to less
loaded sites. Nearly all load balancing mechanisms base on work sharing, work
stealing, or a combination of both [6]. On heavy loaded clusters work sharing
leads to an even higher burden due to unsuccessful load balancing attempts.

As the SDVM provides a way of virtualization, it can connect heterogeneous
machines to form a cluster: Several underlying architectures, platform types and
operating systems are supported. If a site wants to execute a microthread which
doesn't exist in its needed binary format yet, it must be generated somehow.
If the SDVM is used as a middleware for computer clusters, it will request
the source code and compile it on-the-fly and at runtime vising the locally
installed compiler (like gcc). The results show that the compilation time is fast
enough, because the microthreads are small chunks of code and don't have to be
linked (this is done automatically by the SDVM when receiving a microthread
anyway). When the SDVM is used as a firmware for MPSoCs, techniques like
code morphing can be used to translate the binary of the microthreads.

As a middleware the SDVM connects several machines. In contrast to
client/server concepts like CORBA [7], the machines are treated equally,
though. The SDVM cluster consists of the entirety of all sites, which are SDVM
daemons running on participating machines. The number of sites, their comput
ing power, and the network topology between them is irrelevant, as the SDVM

The SDVM: Making Computer Clusters Adaptive 173

automatically adapts to any cluster it is run on, even when the cluster grows
or shrinks at runtime by adding or removing sites [8].

The SDVM daemon consists of several managers with different fields of re
sponsibility. Some deal with the execution of code fragments, some attend to
communications with other sites, some are concerned with the actual decision
making (see Figure 3). The latter implement the self-x features of the SDVM.
They are described in the next sections.

A(lrari.on

Fig. 3. An SDVM daemon consists of several managers.

2.2 T h e execut ion layer

The execution layer is responsible for the handling and execution of the code
and data. Furthermore it provides I /O virtualization.

Microframes waiting for more parameters as well as global memory objects
are kept in the attraction memory. If a data object is requested, it is first sought
locally. In case of a miss the site it actually resides on is determined and then
the data object is moved or copied to the local site.

The microthreads are only requested when they are to be executed lo
cally. The local caching of microthreads and the compilation of microthreads,
if needed, is done by the code manager.

The processing manager executes the microthread/microframe pair. To ac
complish this, it provides an interface for the microthread to read the parame
ters of its microframe. When the execution has finished the processing manager
deletes the no longer needed microframe. To hide network latencies when e.g.
an access to a remote part of the global memory is needed, the processing man
ager may execute several microthread/microframe pairs concurrently. Test runs
suggest that a number of 5 parallel processing manager threads are a good value
for applications having much communication between the microframes.

The input/output manager manages user interaction and accesses local re
sources like hard disks or printers.

2.3 T h e communicat ion layer

The communication layer manages sending and receiving of messages between
sites. The message manager is the central communication hub for all other
managers. It generates serialized data packets to be sent to other sites, adds
information about the local site and determines its address before optionally
passing them to the security manager. This manager may then encrypt and sign
the data packets to avoid e.g. eavesdropping and spoofing. On the receiving
site it will validate the signature and decrypt the message, if necessary, before
passing it to the message manager.

174 Jan Haase, Andreas Hofmann, and Klaus Waldschmidt

The network manager is the part of the SDVM which is responsible for
the actual transportation of the data packets. For the currently existing cluster
realization it uses T C P / I P to send data to other sites. For an implementation
of the SDVM on SoCs or multiprocessor chips it would have to use the on-chip
network to pass data to the receiving site.

2.4 T h e decis ion layer

While the responsibilities of the managers in the execution and communication
layers are more or less usual in computer systems, the decision layer implements
the more sophisticated parts and the self-x-properties of the SDVM.

The SDVM features distributed scheduling which is done by the scheduling
manager. Most scheduling methods assume a central calculation of the exe
cution order, combined with a centrally managed load balancing. They take
advantage of the accord that all information is collected on one site and thus
good scheduling decisions can be made. However, in big clusters this central
machine may become a bottleneck or even a single point of failure.

The SDVM works without client-server concepts as far as possible. Therefore
the scheduling is done autonomously by each site. The sites therefore don't have
knowledge about the current global execution status of the application, but only
about the locally available executable microframes. Some information can be
extracted in advance, though: The dataflow graph of the application contains
all microthreads and therefore the critical path of an application and regions
of high data dependencies can be detected. These parts will then be executed
with higher priority resp. executed preferably on the same site.

The site manager collects data about the local site, e.g. processing speed,
current load, number of applications the site works on, etc. This information
is then passed (piggyback on other messages) to other sites' cluster managers,
measuring the current network latency between these sites on the way. The
cluster manager then possesses performance data about any site it directly
works together with. Thus it can provide hints on which microframes to pass
to which site. For example, a slow site with long network latencies will not be
given a microframe which lies in the critical path of the application—another
microfraine which will be needed a bit later and therefore can afford to be
calculated slower would be a better choice.

Another job of the cluster manager is the crash management. If a site does
not respond to messages anymore, it is (after a while) regarded as crashed. The
cluster is informed about the crash, then the applications which were executed
on this site are determined by the other sites, as these applications have to
be restarted. To avoid a whole restart of an application the SDVM features a
checkpointing mechanism: Any microthread may not only apply its calculation
results to the microframe awaiting them but also to a special microframe, the
checkpoint frame (see Figure 4(a)). When a crash occurs, the site holding the
youngest complete checkpoint frame is determined. This site then creates a
recovery frame which recreates the not-yet executed microframes and reapplies

The SDVM: Making Computer Clusters Adaptive 175

reapply
data

(a) Information about microframes
and the data apphed to them gets
copied to the checkpoint frame.

Fig.

(b) After a crash occured, the
recovery frame is generated and
executed. It recreates the stored
microframes and reapplies the
stored data.

4. The checkpointing mechanism works on the CDAG (controlflow dataflow
allocationflow graph) [9] of an application

the parameters to them (see Figure 4(b)). The application then runs on from
that point undisturbed.

2.5 Freedom of adapt iv i ty

The optimization success of an application's execution depends on how the
current environment properties can be dealt with. Therefore an application
which doesn't make too many restricting assumptions before runtime is more
easily optimized at runtime. Typical assumptions are e.g. the platform type the
application will be run on, the performance needed, the size of the cluster, the
degree of parallelism, etc. The later those degrees of freedom are exploited and
actual information taken into consideration, the more this information will be
accurate with regard to the execution environment—and thus the system be
made adaptive and the optimization improved.

In order to cope with the mentioned degrees of freedom, the SDVM acts
as a virtualization layer which hides most properties of the underlying hard
ware from the applications. Therefore the SDVM may decide single-handedly
where and when to execute specific microframes. In the area of reconfigurable
hardware, the SDVM may even decide to resize the cluster by configuring ad
ditional processors and thus react to performance demand peeks. Based on
available space and application requirements microthreads themselves can be
configured as hardware at runtime and thus executed much faster.

The support for heterogeneous hardware architectures and varying cluster
sizes makes it possible to upgrade hardware while the software runs on: Add
new hardware and shut down the old.

2.6 Rel iabi l i ty and dynamic power management

The SDVM features another interesting concept which can be useful to enhance
the reliability of a cluster or better yet of a multiprocessor chip it runs on.

176 Jan Haase, Andreas Hofmann, and Klaus Waldschmidt

The energy manager monitors the current load of the whole cluster and decides
whether more processing power than needed is available. In this case it will send
some sites a signal to work in a slower mode or even shut down completely. This
reduces energy consumption and avoids overheating of processors. In case the
load increases sites will get a signal to recur from sleep or shutdown mode.

Since energy management has an impact on the reliability of a system [10],
the reliability can be further enhanced by introducing a new energy manage
ment policy. Unlike usual strategies which try to minimize energy consumption
or reduce it without sacrificing performance, the new policy aims towards a
minimal number of temperature changes. Thermal cycles induce mechanical
stress which is a major contributor to chip failure [11]. Thus reducing thermal
cycles reduces mechanical stress and therefore prolongs lifetime.

The SDVM is well suited for this kind of energy management pohcy, because
the workload distribution adapts automatically to the changing performance of
each site. Sites which fail to request work are not slowed down immediately in
order to reduce thermal cycling. Similarly, sites having high load levels are not
put to a higher performance level immediately if there are still underworked
sites present in the cluster.

A method where any site may freely decide for itself its energy status may
result in a situation where all sites simultaneously decide to shut down; there
fore, as a mitigation of the distributed paradigm, the energy managers use an
election algorithm to define a master which then is the only one to decide. The
master may even decide to shut down its own site or to quit being the master;
then the election is simply started again among the remaining sites.

3 Results

In this section some results are shown for a simple application, namely the
Romberg numerical integration algorithm [12]. This algorithm partitions the
area to be measured into several portions of constant width. Those can be
measured independently and the results added eventually. The first microthread
will generate a target microframe where the results are finally added and then, in
our example, 100 or 150 other microframes containing the Romberg algorithm,
which can be run in parallel.

The SDVM needs a lot of calculations and communication to distribute
code and data. Therefore a question is whether the additional overhead is small
enough to maintain the concept.

First, it shall be demonstrated how much overhead is generated by using
the SDVM. To show this, run times on a stand-alone SDVM site are compared
with the run times of a corresponding sequential program (see Figure 5). This
overhead appears to be about 2%, even if the microthreads have to be compiled
before execution.

In the next step, it has to be shown that the speedup is in expected regions.
On a cluster of identical machines (Pentium IV, 1.7 GHz), a value for the

The SDVM: Making Computer Clusters Adaptive 177

Fig. 6. Romberg algorithm: Run times
and speedup depending on the number
of sites

Fig. 5. Romberg algorithm: Comparison
of the run times (in seconds) of a sequen
tial program and the SDVM with one
site. Values are given with and without
compilation time, respectively, for width
100 and 150.

speedup is shown in Figure 6. It reaches roughly the number of participating
sites, which is a good result.

width 100
width 150

speedup width 100
speedup width 150

1 site 2 sites 4 sites
128
193

1
1

65 34
97 51

1.97 3.76
1.99 3.78

4 Conclusion
The Self Distributing Virtual Machine is a middleware which connects any func
tional units to form an adaptive parallel computing system. Both structure and
functionality are biologically inspired as it is built from autonomous interact
ing units, features decentralized decision making and supports self-healing from
cluster member faults. The SDVM detects failed members, removes them from
the cluster and enables applications to efficiently recover from failure by the
use of checkpointing.

The SDVM is self-organizing as a new SDVM-enabled unit which wants to
join only needs a communication channel to a site which is already part of the
cluster. As sites may join or leave at runtime without disturbing the execu
tion of running applications, the cluster may grow or shrink to any convenient
size, moreover regardless of the sites' operating systems, hardware or even the
network topology between them. The cluster scales automatically.

It is self-optimizing as it automatically distributes data and program code
to sites where it is needed, thereby dynamically balancing the workload of the
whole system. Furthermore, this vastly facilitates a hardware upgrade while
the system is running by shutting down old hardware and signing on new
hardware—the applications will be relocated automatically and continue to run
nonetheless. Similarly, resources can be added temporarily to cope with short
term peeks in computing power demand.

The distributed scheduling of the SDVM provides the foundation for a new
energy management policy which can improve the reliability of the participat
ing systems. It differs from usually applied policies in its focus to reduce the

178 Jan Haase, Andreas Hofmann, and Klaus Waldschmidt

number of thermal cycles of the system while minimizing the negative impact
on performance. The tradeoffs between performance and reliability, and number
of thermal cycles and mean temperature levels are currently investigated.

A prototypical implementation of the SDVM has been created and evaluated
for the area of cluster computing. The prototype and its full source code is freely
downloadable [3]. The SDVM is currently being adapted to multi-core processor
systems.

References

1. George Bosllca, Aurelien Bouteiller, Franck Cappello, Samir Djilali, GlUes Fedak,
Cecile Germain, Thomas Herault, Pierre Lemarinier, Oleg Lodygensky, Frederic
Magniette, Vincent Neri, and Anton Selikhov. Mpich-v: toward a scalable fault
tolerant mpi for volatile nodes. In Proceedings of the 2002 ACM/IEEE conference
on Supercomputing, pages 1-18. IEEE Computer Society Press, 2002.

2. VDE/ITG/GI-Arbeitsgruppe Organic Computing. Organic Computing,
Computer- und Systemarchitektur im Jahr 2010. Technical report, VDE/ITG/GI,
2003.

3. The SDVM homepage, 2006.
4. SCI: Scalable Coherent Interface, Architecture and Software for High-Performance

Compute Clusters. Springer-Verlag, 1999.
5. Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni,

K. Gharachorloo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta,
M. Rosenblum, and J. Hennessy. The Stanford flash multiprocessor. In 25 years
of the international symposia on Computer architecture (selected papers), pages
485-496. ACM Press, 1998.

6. Mukesh Singhal and Niranjan G. Shivaratri. Advanced Concepts in Operating
Systems. McGraw-Hill, New York, 1994.

7. Object Management Group. The Common Object Request Broker: Architecture
and Specification. Object Management Group, 2.5 edition, September 2001.

8. Jan Haase, Frank Eschmann, Bernd Klauer, and Klaus Waldschmidt. The SDVM:
A Self Distributing Virtual Machine. In Organic and Pervasive Computing -
ARCS 2004: International Conference on Architecture of Computing Systems,
volume 2981 of Lecture Notes in Computer Science, Heidelberg, 2004. Springer
Verlag.

9. Bernd Klauer, Frank Eschmann, Ronald Moore, and Klaus Waldschmidt. The
CDAG: A Data Structure for Automatic Parallelization for a Multithreaded Ar
chitecture. In Proceedings of the 10th Euromicro Workshop on Parallel, Distrib
uted and Network-based Processing (PDP 2002), Canary Islands, Spain, January
2002. IEEE.

10. K. Mihic, T. Simunic, and G. De Micheli. Reliability and power management of
integrated systems. In DSD - Euromicro Symposium on Digital System Design,
pages 5-11, 2004.

11. Jayanth Srinivasan, Sarita V. Adve, Pradip Bose, Jude Rivers, and Chao-Kun
Hu. Ramp: A model for reliability aware microprocessor design. In IBM Research
Report, RC23048 (W0312-122), December 2003.

12. G. Dahlquist and A. Bjorck. Numerical Methods. Prentice Hall, Englewood Cliffs,
NJ, 1974.

Teleworkbench: An Analysis Tool for
Multi-Robotic Experiments

Andry Tanoto^, Jia Lei Du^, Ulf Witkowski^ and Ulrich Ruckert-'

Heinz Nixdorf Institute
System and Circuit Teclinology

University of Paderborn, Germany
{tanoto, j ia ldu , witkowski, rueckert}Shni.upb.de

Abstract . Tliis paper presents a tool, one component of the Telework
bench system, for analyzing experiments in multi-robotics. The pro
posed tool combines the video taken by a web cam monitoring the field
where the experiment runs and some computer generated visual ob
jects representing important events and information as well as robots'
behavior into one interactive video based on MPEG-4 standard. Visual
ization and data summarization enables the developer to quickly grasp
a situation, whereas the possibility of scrolling through the video and
selectively activating information helps him analyzing interesting events
in depth. Because of the MPEG-4 standard used for the output video,
the analysis process can be done in a wide range of platforms. This trait
is beneficial for education and research cooperation purposes. ̂

1 Introduction

One way to design and develop multi-robot systems is the use of bio-inspired
swarm principles. Swarm systems usually consist of many homogeneous agents
that follow a small set of simple rules. Communication, either explicitly or im
plicitly via the environment, is strictly locally constrained. There is no central
coordination, and cooperation among the agents and global effects result from
the individual behavioral rules. When developing such robot swarm systems,
the setup, observation and analysis of experiments can be tedious and challeng
ing for the roboticist. Numerous robots need to be charged and the programs
downloaded onto the robots. When executing the experiment, it is difficult to
concurrently observe all robots, which run in real-time and possibly over a long
period. It is our intention to provide an analysis tool for experiments in multi-
robotics. This analysis tool is meant to help roboticists in assessing their robot
programs or algorithms for any application when being tested in real experi
ments. Through this tool the observable as well as the unseen behavior of robots

' This work was developed in the course of the Collaborative Research Center 614
Self-optimizing Concepts and Structures in Mechanical Engineering University of
Paderborn, and was published on its behalf and funded by the Deutsche Forschungs-
gemeinschaft.

Please use the following formatwhen citing this chapter:

Tanoto. A., Du. J.L.. Witkowski. U., Riickert. U., 2006, in IFIP International Federation for Information Processing.
Volume 216, Biologically Inspired Cooperative Computing, eds. Pan, Y. Rammig. F.. Schmeck, H., Solar. M., (Boston:
Springer), pp. 179-188.

180 Andry Tanoto, Jia Lei Du, Ulf Witkowski, and Ulrich Riickert

during experiments will become more transparent to the roboticists, which is
an invaluable factor in debugging the robot programs.

For analysis purposes, robots are usually programmed to send or to record
a lot of information. The question now is how to effectively summarize all infor
mation produced in a way that the actual situation of robots at any particular
time can be conveyed to and easily comprehended by robot programmers. One
way to do this is through visualization. Visualization can be used to show the
behavior and especially to make complex states of behavior comprehensible to
human.

The tool we propose works by processing information acquired from the
Teleworkbench system [1] during an experiment and outputs one multimedia file
visualizing acquired information. The visualization is built based on MPEG-4
standard. There are some reasons for using MPEG-4: its interoperability, flexi
bility, reusability, and interactivity. With MPEG-4, we can easily combine sev
eral multimedia sources, whether it is video or audio, into one file playable in a
wide range of hardware and operating systems. This trait is advantageous for
exchanging and storing the result of the experiment. Moreover, we can have a
"'run once, analyze many"' analysis tool that requires us to run the analysis
process only once but enables us to have many perspectives of the problems we
are trying to solve at later time. Furthermore, with MPEG-4 we can also embed
computer-generated objects into the video data, which is essential for providing
a sense of reality for users. In the case of our analysis tool, we use one video
taken by an overhead web cam monitoring a field where the experiment is exe
cuted and embed computer-generated objects on top of it. These video objects
represent information important for analysis, e.g. robots' path, communication
message, internal state, sensor values, or even images. To provide interactivity,
there is a menu area with which users can select the most relevant information
for a certain situation.

To date, there are some tools for analyzing robot experiments, ranging
from general-purpose software such as MATLAB [2] and SysQuake [3] as well
as application- and robot-specific software such as KITE [4], beTee [5], and
PyKhep [6], However, none of them offers all the features we mentioned above.

In this paper, we present the proposed tool for analyzing experiments using
minirobot Khepera. However, it does not necessarily mean that this analysis
tool can be used only for this type of robot. The idea of this tool is extensible
to any robotic platform.

The paper is structured as follow. After shortly stating the problem and our
proposed solution in Chapter 1, we will give a short overview of our Telework
bench system in Chapter 2. Next, the description of the analysis tool will be
presented in Chapter 3. Afterward, Chapter 4 will describe how our proposed
tool can help us in analyzing an experiment in bio-inspired robotics. This paper
will be concluded in a short summary in Chapter 5.

Teleworkbench: An Analysis Tool for Multi-Robotic Experiments 181

2 Teleworkbench - A Short Overview

We have presented the Teleworkbench System in [1]. Teleworkbench is a tele-
operated platform or testbed for managing experiments involving one or many
mini-robots Khepera. The idea behind the Teleworkbench is to provide remote
setup and execution of experiments in multi-robotics and also to facilitate an
easy analysis on the resulted data. To enable long-time experiments, the Tele
workbench is equipped with recharging stations to enable robots recharging
their batteries during runtime. The Teleworkbench is connected to the Internet
to allow easy access for remote users located in any part of the world.

2.1 Teleworkbench Features

- Internet connectivity. The Teleworkbench is connected to the Internet,
which allows easy access for remote users located on every part of the world.

- Remote experiment setup and execution. Remote users can setup and
execute experiments involving many mini-robots Khepera with various exten
sion modules. The Teleworkbench has one field, measuring 2m x 2m, which
is partitionable into four fields of size Im x Im.^

- Robot posit ioning system. The robot positioning system will track every
robot captured by a web cam and extract robots' position relative to the
field. At the current version, 36 robots can be identified and localized.

- Wireless robot communication. The Teleworkbench system uses Blue
tooth technology as the medium for robot communication. With our Blue
tooth module [7], the communication among robots is more reliable and faster
(up to 57600 bps) than the normal Khepera Radio Turret.

- R e m o t e program-download to robot. Remote users are allowed to di
rectly control the behavior of the robots by downloading their own programs
to robots.

- Live-video of the experiment. During experiments, users can in real-time
watch how the experiments proceed through the live-streamed-video of the
experiment taken by web cams monitoring the fields.

- Events and messages logger. Every occurred events and exchanged mes
sages are recorded and retrievable.

- Post-experiment analysis tool. Immediately after the experiment comple
tion, an interactive MPEG4-video is generated showing some important infor
mation recorded during the experiment. With this, we can have a "run once,
analyze many" analysis tool. Thus, analysis of the experiment is easy and
convenient. Moreover, since all information is stored in one file, the MPEG4-
based video file, it is very comfortable for exchanging and presenting research
result.

The main field is more or less equal to a field of size 11.6m x 11.6m for robot
Pioneer3-DX (44cm x 38cm x 22cm).

182 Andry Tanoto, Jia Lei Du, Ulf Witkowski, and Ulrich Riickert

- Interoperability. The Teleworkbench system was designed to allow com
munication with other programs, which can be implemented simply by using
socket communication. Result in [8] shows how one program acting as a gate
way passes an XML-based messages from a remote user to the robot through
the Teleworkbench system.

2.2 Teleworkbench Components

The Teleworkbench system (see Figure 1) comprises one field with several cam
eras monitoring it, a wireless communication system, and some computers con
nected to a local area network with tasks such as image processing, databasing,
message redirecting, and web-hosting.

SMt

Teleworkbench System

»)t!

.......

!
$ j

" — - < •

Ma l
'^}J ft* J

I^^^S)^W

»'l

. . . . „ . „

^^^s

*i

...,

1

^ H

Cam 2

^&--ml fe^
fX..,..., • S«vfit

" ^ r -

VktaoS»v«5

Fig. 1. The diagram of the Teleworkbench system showing the system architecture.

The experiments will be executed on the field which has the resources re
quired as defined by the users during the experiment setup. During the ex
periment, the web cam above the field will become active and send the video
information to the Video Server. This server will process the captured video
data to extract any robot on the field and calculate the position and orienta
tion of the robots. To allow the extraction of robot position, every robot has
a color mark on top. The detected robots along with their position will be
recorded in a log file called "Position Log File". Concurrently, this server will
also encode the video and stream it to the Video Streaming Server, to provide
live video of the experiment.

During experiment, robots can communicate wirelessly with each other or
ask the Teleworkbench Server through the Bluetooth module. In some experi
ments, robots might need to send some internal information for analysis process.
Every messages sent by the robot will be recorded in a log file called "Commu
nication Log File".

Teleworkbench: An Analysis Tool for Multi-Robotic Experiments 183

If required by the users, it is also possible to involve some intelligent agents
running on separate computers (For security reason, we allow only computers
inside our LAN) connected to the Teleworkbench Server. These agents then can
communicate or even control the robots during the experiment.

After the experiment is over, the Teleworkbench Server will call the Post-
Experiment Tool module to generate the visualization of the experiment. This
tool will generate an MPEG-4-based video with some computer generated ob
jects superposed on it. These objects represent some important information
needed by the roboticists for analysis purpose. Further detail on this analysis
tool will be presented in the following chapter.

3 The Teleworkbench Post-Experiment Analysis Tool

The proposed tool consists of two main parts, which are MPEG-4-based video
serving as a user interface and visualization generator. The former is actually
the output of the latter.

3.1 The Analysis Tool

Video as User Interface A snapshot of the video is shown in Fig. 3(a).
The part in the middle is the video taken by a web cam located above the field
where experiments run. In the same area, some computer-generated objects will
be superimposed onto the video near the corresponding robot. These objects
representing information such as robots' body, communication messages, robots'
path, battery level, internal states, and linear camera data.

In the area on the right side, there are two sub-areas, the first sub-area above
is the menu area at which users can select the information they want to see at
any particular of time. The second one below is the detail-information area in
which users can have a more detailed visualization of selected information.

Visualization Generator The block diagram of the visualization generator is
shown in Fig. 2. The input for the visuaUzation is the position and communica
tion log file as well as the video monitoring the platform where the experiment
is running. The video and position log file are generated by the Robot Position
ing system mentioned at the previous section, while the communication log file
is provided by the Data Logger. At the other end, the process will produce a
video serving as the user interface and the visualizer.

The visualization generator is basically composed of data extractor, scene
generator and MPEG-4 scene encoder. In the following paragraphs, a more
detailed description of each component will be presented.

Data Extractor Data extractor is responsible to extract information needed
by the scene generator. The input data are position and communication log
file. The position log file is generated by the robot positioning system, which

184 Andry Tanoto, Jia Lei Du, Ulf Witkowski, and Ulrich Riickert

calculates the position of all robots taken by the overhead web-cam. Hence, it
contains only robot external information. Meanwhile, communication log file
captures all exchanged messages among the robots or between the server and
the robots. Thus, it preserves robots' internal information.

Position log file provides two important information for the data extractor.
The first one is the frame information in the form of frame number and time
stamp. This information is required to synchronize the computer generated
objects with the input video data. The second information is the position and
orientation information in pixel unit. This information is required for drawing
some objects at the right position and orientation.

In the case of communication log file, we can basically program the robot to
send as various information as possible to provide robot programmers with their
desiring information. But for the time being, we support only several informa
tion to be visualized, which are infra-red sensors, linear camera, robots' states,
and other communicated messages. The last one means all messages which do
not belong to any of the first three types of information. To differentiate the
messages, we use a specific character as a header for each type of information.

Scene Generator Scene generator is responsible to generate scene descrip
tion which is required by the MPEG-4 scene encoder for creating a computer-
generated animation overlaying the input video data. The scene description is
based on XMT-A, which is one of the Extensible Markup Language (XML)-
based formats supported by the MPEG-4 standard.

The scene description contains the information describing how the robots
move, how the visualization of the sensors' values, the communication messages,
and the robot's internal state are varying over time, as well as how users interact
with the visualization content.

MPEG-4 Scene Encoder MPEG-4 scene encoder has a function to generate
an MPEG-4 file based on the scenery information written in XMT-A format.
The heart of this component is the open source software called MP4B0X, a
command-line MPEG-4 scene encoder. The output from MP4Box is a video file
in MP4 format. There are two reasons that we are using this software. First, it
supports many types of multimedia file, e.g. MPEG-4 video and audio, JPEG

Viiiuajttniitton Rulktvr

c •nmuKlutlon

c ™ . ^ .

.

d»

Data Extractor

OiMnl«l«n[

'
Scans GanarMor

Scaniry 1

MPEG4 Scana
Encodar

Fig. 2. The process ^ow of the visualization generator.

Teleworkbench: An Analysis Tool for Multi-Robotic Experiments 185

and PNG images, AVI, etc, which means we can easily combine many kinds of
multimedia file into one file. Second, it is an open source software, which means
it is free of charge. For more detail on the GPAC project in general and the
MP4B0X in particular, interested readers are referred to the aforementioned
reference.

3.2 The Implementat ion

At present, the data extractor and scene generator are built using C language
and run under Linux. However, it will be easy to port these modules to other
operating systems. In the case of MPEG-4 scene encoder, we downloaded and
installed the GPAC project. From this package we get two important programs,
which are MP4B0X and 0SM04. The former is an MPEG-4 scene encoder
and the latter is an MPEG-4 player which we use for playing back the output
produced by the former.

4 Experiment

In research, models have been developed to simulate the behavior of human
crowds in panic and escape situations [9]. The findings gained from such sim
ulations help engineers design escape routes of areas where mass panic situa
tions may occur. When performing such simulations, researchers usually have
a global view and are interested in total system behavior. In these simulations
people are often modeled as particles. The resulting speed of a particle is calcu
lated in dependence of the desired direction as well as attractive and repulsive
forces of other particles and static obstacles like walls. The particles often have
global knowledge to make their decisions and are able to sense and move omni
directionally.

Inspired by the idea of escape simulations for large crowds, we aimed to
develop evacuation strategies for multi-robot-systems. Evacuation strategies for
robot systems may become necessary when an area must be vacated quickly
through a limited number of exits or when a large number of robots have to
board a transport robot. However, in difference to the particle-based simulation
models above, the individual robots generally do not have global knowledge
and cannot sense and move omni-directionally. Our objective was to develop
an evacuation strategy for multi-robot-systems based on simple, robust policies
relying only on local sensing and information.

For our implementation and experiments we used the Khepera II robot
equipped with our Bluetooth communication module, and the Teleworkbench.
Using the Teleworkbench, the setup and execution of an experiment is signifi
cantly simplified. Several experiments can be pre-planned and are then automat
ically executed consecutively by the Teleworkbench. For example, if the effects
of different program parameters need to be tested, it is possible to pre-compile

186 Andry Tanoto, Jia Lei Du, Ulf Witkowski, and Ulrich Riickert

the robot software with the different parameters, transfer those programs to
the Teleworkbench and let the Teleworkbench automatically run the tests.

The setup of our experiment is shown in Fig. 3(a). The objective of the
robots is to leave the left side of the operational area through the exit in the
middle. One major challenge is to avoid mutual blockage and deadlock situa
tions. For perception, the robots only use their integrated infra-red proximity
sensors with a range of vision of about 4 cm. In our experiments the approximate
direction of the exit is known to the robots. They use the integrated odometry
system to keep track of their direction. We implemented a simple, distributed
strategy in which robots first try to rush towards the exit individually. When
the robots detect an obstacle or another robot, they try to circumnavigate it.

The analysis tool presented in this paper helps the developer in debugging
multi-robot systems as it automatically matches and merges internal informa
tion from the robots with external information extracted from the recorded film.
The result is presented in a single, interactive interface where the developer can
fast forward or backward to situations and selectively activate information. Vi
sualization and data summarization enables the developer to quickly grasp a
situation, whereas the possibility of selectively activating information helps him
analyzing interesting events in depth. The integration in a single user-friendly
interface helps the developer concentrating on the analysis of relevant incidents
and software debugging.

One concrete example for a useful feature in this particular case is the dis
play of the superposed robot trajectories which allows us to analyze the global
effects of our evacuation algorithm (see Fig. 3(b)). Furthermore, the presenta
tion of the individual robot paths together with the respective sensor values and
internal states in a single analysis window, and the possibility to fast forward
and backward to important situations helps us to verify and debug the code as
the analysis and explanation of the robot behaviors is significantly simplified.

5 Conclusion

We have described an analysis tool which is part of our Teleworkbench system.
This tool can be very beneficial for robot programmers due to its ability to
provide a video of the experiment embedded with computer-generated visual
objects representing important events and information as well as the robots'
behavior during an experiment. The use of MPEG-4 standard is very helpful
because it eases the visualization process and gives us flexibility in providing
interactivity between users and the content. We have demonstrated the func
tionality of the analysis tool in a bio-inspired robotic experiment. From the
demonstration, we can see how the proposed tool can give us insight on the
actual internal and external behavior of robot (s), which is invaluable for de
bugging.

Teleworkbench: An Analysis Tool for Multi-Robotic Experiments 187

(a) Setup of the experiment. The robots try to evacuate the
left side of the area through the middle gate Eis quickly as
possible.

(b) Analysis of the experiment. Visualization of the super
posed robot paths. All robots passed through the gate effi
ciently except robot number 12.

F ig . 3 . Snapshots of the output video of the proposed analysis tool in a bio-inspired
experiment involving five mini-robots Khepera II.

188 Andry Tanoto, Jia Lei Du, Ulf Witkowski, and Ulrich Riickert

References

1. A. Tanoto, U. Witkowski, and U. Riickert, "Teleworkbench: A teleoperated plat
form for multi-robot experiments," in Proceedings of the 3rd International Sympo
sium on Autonomous Minirobots for Research and Edutainment (AMiRE 8005),
Awara-Spa, Fukui, JAPAN, 20 - 22 Sept. 2005.

2. I. The Math Works, "Matlab user's guide," 24 Prime Park Way, Natick, MA 01760,
Jan. 1990.

3. SysQuake, "SysQuake." [Online]. Available: http:/ /www.k-team.com/software/
sysquake.html

4. E. Sahin and P. Gaudiano, "KITE: The Khepera integrated testing environment,"
in Proceedings of the First International Khepera Workshop, Paderbom, Germany,
1999, pp. 199-208.

5. A. Bredenfeld, "Behavior engineering for robot teams," in Proceedings of Au
tonomous Minirobots for Reseach and Edutainment (AMiRE 2001), Paderbom,
2001.

6. P. Stohr, "PYKHEP: A python based visualisation toolkit for the khepera robot,"
in Proceedings of the First International Khepera Workshop, Paderbom, Germany,
1999, pp. 209-218.

7. M. Grosseschallau, U. Witkowski, and U. Riickert, "Low-cost bluetooth commu
nication for the autonomous mobile minirobot khepera," in IEEE International
Conference on Robotics and Automation - ICRA05, Barcelona, Spain, 18 - 22 Apr.
2005, pp. 4205-4210.

8. J. L. Du, U. Witkowski, and U. Riickert, "Teleoperation of a mobile autonomous ro
bot using web services," in Proceedings of the 3rd International Symposium on Au
tonomous Minirobots for Research and Edutainment (AMiRE 2005), Fukui, Japan,
20 - 22 Sept. 2005.

9. D. Helbing, L Farkas, and T. Vicsek, "Simulating dynamical features of escape
panic," Nature, vol. 407, no. 6803, pp. 487-490, Sept. 2000.

Trading off Impact and Mutation of Knowledge
by Cooperatively Learning Robots

Willi Richert, Bernd Kleinjohann, Lisa Kleinjohann

Intelligent Mobile Systems, University of Paderborn / C-LAB, Germany,
richertSc-lab.de

Abstract. We present a socially inspired approach that allows agents
in Multi-Agent Systems to speed up their own learning process through
communication. Thereby, they are able to trade off impact of knowl
edge by mutation dependent on the recent performance of the inter
acting agents. This is inspired by social interaction of humans, where
the opinions of experts have greater impact on the overall opinion and
are incorporated more exactly than those of newbies. The approach is
successfully evaluated in a simulation in which mobile robots have to
accomplish a task while taking care of timely recharging their resources.

1 Introduction

A lot of useful techniques exist for groups of agents that learn to behave op
timally to reach a given task while adapting to their environment. Especially
reinforcement learning (RL) [1, 2], where the agent does not need a predefined
environment model and learns through reward and punishment that it receives
from its environment, has been shown to be a viable solution for groups of
behavior-based learning agents [3]. This approach has also been successfully
used to learn in groups of agents to connect the individual agent's innate states
to the proper behaviors it has to execute when being in the according state [4].
The success of such reinforcement learning systems depends in general on the
careful design of the state and action space and the reward function. In many
situations these have to be found out by careful analysis of the domain fol
lowed by a trial and error period — often leading to suboptimal solutions. In
Multi-Agent Systems (MAS) the problem is on the one hand amplified since
the interferences of the agents cannot be anticipated by the designer. This is
especially true for environments, in which no central intelligence is available
for coordination and optimization. On the other hand it can be relieved if
proper learning methods are combined with robust mechanisms for spreading
the learned knowledge between the agents.

In this case, however, the problem arises, how to integrate the received infor
mation into its own knowledge base if only sporadic communication possibilities
exist. Our socially inspired approach that we describe in this paper contributes
to this problem with the following properties:

Please me the following format when citing this chapter:

Richert, W., Kleinjohann, B., Kleinjohann, L., 2006, in IFIP International Federation for Information Processing, Volume
216, Biologically Inspired Cooperative Computing, eds. Pan, Y, Rammig, F., Schmeck, H., Solar, M., (Boston: Springer),
pp. 189-198,

190 Willi Richert, Bernd Kleinjohann, Lisa Kleinjohann

- The impact of knowledge learned by individuals is weighted in the commu
nication process based on the recent performance of the participants, called
"expert state". The more "expert" an agent is regarded the more influence
it has on the final knowledge arbitration of the other participant.

- Mutation fosters new solutions based on the expert level of the participants.
The less "expert" an agent is regarded the more mutated his information are
transmitted.

- The number of expert agents is allowed to vary.
- In unknown or changing environments the performance of agents will decline

resulting in more mutation until the first agent finds a way to perform better,
that in turn increases his expert state and impact on the subsequent knowl
edge exchange. Thereby, this approach is robust to environmental change.

In our previous work we have shown how the knowledge transfer in societies
of autonomous systems leads to the propagation of the most valuable informa
tion units that offer the biggest performance advantage [5,6]. In that experiment
we modeled the knowledge as a discrete sequence of actions which have influ
ence on the agent's intrinsic performance evaluation. Based on the outcome
of the imitated action sequences these were distributed in the agent society.
Encouraged by these results, we use the imitation process in form of group
learning to deal with continuous information units: the information, how the
continuous state space is best to be discretized. The discretization in the current
work is inspired by learning in human societies, where humans exchange their
knowledge from time to time. Typically in this group learning process firstly
the opinion of experts counts more than the opinion of less experienced group
members. Furthermore, expert opinions tend to be more exactly integrated into
the learning result. A good measure for experience are the age or lifetime of an
agent and its accumulated performance. In this way, the propagation of useful
knowledge in form of information units is not only dependent on the current
state of the imitated agent, but also on its lifetime achievement. In this vein,
we are approaching the optimization of the state space from the memetic point
of view according to Dawkins [7, 8].

We evaluate the approach in a mobile robot application that simulates three
of our soccer robots Paderkicker [9]. They have to learn how to optimally per
form a given task under strict resource constraints.

2 Related Work

Many existing approaches have shown, that communication can and should be
used in MAS to improve the group performance [10, 11]. Riley and Veloso [12]
demonstrate how coaching between the individual agents can improve the per
formance for Q-learning agents. Tan [4] investigated the issue of exchanging
information between multiple Q-learning agents. He found that the exchange of
learned policies among agents "speeds up learning at the cost of communica
tion". Dahl et al. [13] show how inter-agent communication in conjunction with

Trading off Impact and Mutation of Knowledge ... 191

RL can improve the capability of agent groups to organize themselves spatio-
temporally. In his work the agents communicate the reward to speed up the
learning process — the state space itself is predefined and kept fixed for the
whole learning process. In contrast to Dahl our approach deals with the adap
tation of the state space based on the experience level of the communicating
agents.

In this work we are not concerned with the optimization of joint actions
in cooperative MAS, as it is investigated e.g. by Kapetanakis et al. [14] who
demonstrate how agents employing their FMQ algorithm have the ability to
converge towards the optimal joint action when teamed-up with one or more
simple Q-learners which are in touch all the time. A more general investigation
on cooperation in MAS is done by Claus et al. [15]. Instead, we are interested
in mechanisms that allow for robust spreading of learned efforts between agents
where the experience and the number and the visible agents may vary. The
work on expert balancing algorithms, e.g. [16], typically relies on a fixed set
of experts that issue recommendation at fixed time interval and the agent in
question only has to choose one every time step. However, situations of this
kind are very seldom in real-world application. Often we are happy if there
is someone within reach to communicate with and we have to make ad-hoc
decisions about how much value his information provides and how we integrate
it into our own knowledge. For this situation we present our approach.

3 The Problem Domain

We consider an environment where mobile robots have to maximize their per
formance performing an abstracted task while keeping track of their limited
resources. A robot collects a so-called task point in every time step when it ex
ecutes the proper task action in the task area. The agent has to pay attention
to resources of m types which are consumed at an individual rate. For each
resource type the actual resource level is measured by a continuous value be
tween 0 (resource of this type exhausted) and 1 (resource of this type is filled).
The agent's main goal is to collect as many task points per lifespan as possi
ble. For this it has to interrupt the main task in order to timely arrive at the
filling station of the correct type that satisfies the agent's resource needs. In
the environment there are multiple energy bases for every resource type. If one
resource level is zero the agent dies and is restarted with zero task points. This
way they have to trade off task accomplishment and lifetime extension through
timely taking care of resources.

4 Architecture

The agents learn on two levels (Fig. 1): 1) the individual learning level, where
the best mapping from the state space to the action space is learned using

192 Willi Richert, Bernd Kleinjohann, Lisa Kleinjohann

standard Q-learning, and 2) the knowledge exchange level, where the agents
exchange their knowledge when encountering each other.

perception

modelling system

Fig. 1. Agent architecture: The interplay between the knowledge exchange level
(KEL) and the individual learning level (ILL).

4.1 Individual Learning Level (ILL)

An agent is provided with hand-coded reactive behaviors [17] that move to
ward one of the two resource type areas or to the task area, respectively. The
behaviors are constructed out of low level basic actions that move the agent
toward the desired goal and avoid obstacles on the basis of potential fields [18].
The agents have to learn the best mapping of their intrinsic resource level state
to the predefined behaviors using reinforcement learning. For every resource
the following states are possible: 0 for "drive immediately to the proper energy
filling station", 1 for "resource OK", and 2 for "resource maximum". State 2
is used to denote that the agent can stop the refuel process. States 1 and 2
say that it is save to perform the actual task to collect performance points.
The threshold that the agent will have to adapt at runtime through coopera
tive learning divides states 0 and 1 and thus discretizes the continuous resource
fill level into discrete states usable for RL. The reinforcement-learning agents
use the one-step Q-learning algorithm [19] to learn the correct mapping of the
resource input state vector to the proper behavior.

Since the actions take some time to be accomplished, the Q-values are not
updated at every time step, but only after the chosen action has been finished.
The Q-values for the state-action pairs are calculated with the standard Q-
learning approach:

Q{s,a) <~ Q{s,a) + a(r + ^ma.xQ{s',x) — Q{s,a)) (1)

Here, s denotes the state combining the state of two resource types, in this
example called "R" for red and "B" for blue. The variable a denotes one of
the three approaching abstract behaviors. The learning factor a. was set to

Trading off Impact and Mutation of Knowledge ... 193

a = } s with n{^s^ a) being the counter for executing action a in state s. The

probabihty p(a\s) for choosing the best action a in state s is calculated as

p(argmaxQ(s,a) |s) = 0.999" • 0.3 ,
a

with u being the global update counter that is increased at every Q-value up
date. The reward was given after r = 0.01(0^ — c;,) + 5ct, with c^ counting
the time steps the agent has been performing its task and Cf, counting the time
steps the agents resources were below the threshold, ct was set to 1 if the agent
managed to turn around one of its resources meaning a successful refuel since
the last update, and 0 otherwise. The discount factor 7 is set to 0.1. These
values were empirically determined to run reasonably well even for a pure RL
approach without the expert learning level for later comparison.

4.2 Knowledge Exchange Level (KEL)

In parallel to the learning process at the ILL the agents where enabled with
communication means to optimize the segmentation of their continuous state
space through group learning. The knowledge to exchange in our problem do
main are the threshold values of each resource type in R = {1,... ,m}. These
values determine when an agent will stop his task performing actions and drive
immediately to the proper energy filling station. The adjustment of the thresh
olds is done at run-time, thereby adjusting to a moving target, since it might
for instance become easier to reach a particular refilling station.

If an agent has a found a better segmentation this will be acknowledged at
the next communication process, because it will most likely lead to a better
performance. The knowledge weighting in combination with mutation is done
as follows: The knowledge of agents that have a better recent performance will
also have a greater impact on the final adapted knowledge of both agents.
Furthermore, also the agents' knowledge accuracy should be dependent on the
agents' experience. I.e. the less experienced an agent is the more noisy it's
knowledge will enter the final outcome. This is done by trading off the impact
and the mutation rate at the exchange of knowledge when communicating,
leading to the computation of the adapted knowledge: The new thresholds of
agent i ^ D, where D C A with A = {1,... ,n} denoting the entire group of n
agents depending on m different resources r € R is described by equation (2):

*I = Ey^^-*S (2)

t^ is drawn randomly from the Gaussian distribution N (t^, cr^) with the stan
dard deviation aa ~ e{a)~^, thereby modeling the mutation that is introduced
at every communication process. The impact Wa is proportionally dependent on
the expert state e(a) of that agent. e(a) can be modeled to denote the moving
average of the agent's lifetime or task achievement. The greater e(a) is the more
impact on the estimation of threshold t^ it has.

194 Willi Richert, Bernd Kleinjohann, Lisa Kleinjohann

Thus, the "expert impact" e(a) affects the overall threshold adjustment in
two ways: On the one hand directly through the weight Wa, and on the other
hand through the accuracy modeled by the normal distribution N (tl^,al). This
has the counterpart in real life where usually more attention is paid to the
experts than to newbies. In practice, the expert impact e(a) of agent a defined
as e(a) = lifetime{a) + performance{a) has shown to yield a reasonably good
expert measurement in our domain. The performance is calculated as one point
per time step when performing the task. The thresholds are adjusted in two
ways:

1. At a fixed time frame the agents get the chance to communicate with other
agents staying close enough defined by a radius. Given, that agent i comes
close enough to communicate with j , they both exchange their own estima
tion of the thresholds f, r € R, as shown by Formula (2) from the i's point
of view. In this case, D = {i,j}. The thresholds are computed separately
for every agent which leads to different thresholds for both and encourages
them to explore the state space. It showed that letting the agents communi
cate too often will prevent the convergence to sound threshold values since
the agents have no time to see the effect of the new thresholds.

2. If an agent dies, because one of its resources is exhausted, it is restarted
with full resources and its thresholds are calculated from the thresholds of
all agents (D = A) randomized and weighted dependent on their experience
e(a).

In this experiment, we restricted the agents to apply the group learning to only
the thresholds segmenting the state space. However, it could be easily applied
to other areas like, e.g. the Q-values.

5 Experimental Setting

The approach has been evaluated in simulation with three Pioneer2DX ro
bots [20] having sonar (90°) for obstacle avoidance, laser range-finders for de
tection of the individual markers, and differential gear. The experiments were
performed on the Player/Stage [21] simulation environment. Usually, controllers
written for the Stage simulator can be used on real Pioneers [13]. The agents
were equipped with 360° fiducial finders, so that we could turn off foraging and
map building control and concentrate on the learning task at hand.

The agents were anonymous in that they could not detect each others iden
tity. When communicating they only were allowed to transmit their evaluation
function, i.e. the resource thresholds for the two energy types "R" and "B", and
their expert state, i.e. their current age. The distribution of the energy bases in
the environment can be seen in Fig. 2. At the upper and lower left corners of
the 8x6m area there are located two resources of type "R". In the middle of the
left wall there is the task area: agents staying near this marker were said to ex
ecute the desired abstract task and thus gathering a point for every predefined

Trading off Impact and Mutation of Knowledge ... 195

Pig. 2. Environment containing the task area and the energy bases of type "R" and
"B".

timer interval. At the right side there is the resource of type "B" located. The
setting thus has the property that resource "R" is located right beside the task
area, whereas the agents have to travel across the entire field width to arrive at
resource "B" to fuel their resource tank.

The environment shows the wanted realistic properties without distracting
from the experiment under investigation; 1) It differs from the blocks-world
examples, in that the individual actions take time that cannot be foreseen and
perception being noisy. Although the distance between the different marker
areas are approximately known and could be computed, the time to travel from
one to another cannot be calculated in advance with adequate accuracy, because
the interference of agents that have not managed to dodge each other introduces
the time needed to perform a relieve maneuver. 2) Resources can be blocked
by another agent so that an agent that also wants to reach the resource has to
wait for an unknown time.

The parameters were set as follows: In formula (2) /? was set to 0.2, a? = 0.2-
e^Tro, setting the variance to 0.2 for unexperienced agents and decreasing with
the agent's experience. Although this also had to be empirically determined, it
usually has to be done only once — changes in the environment do not render
the once chosen value for a useless, as opposed to the thresholds which have to
be measured empirically every time anew without this form of social adaption.

6 Experimental Results

The experiment was run for 120 minutes per trial. We performed 10 trials for
the random version, and 30 trials for the pure RL experiment (only ILL) and
the hybrid version (ILL + KEL).

One would normally think that setting the threshold of "R" to something
like 0.2 and that of "B" to approximately 0.8 would yield the best performance
and lifetime of the agents, since "R" is much nearer to the task area and thus
the behavior to drive to the "R" refuel station could be triggered much more
later. However, as the experiments showed, the agents' thresholds converged to

196 Willi Richert, Bernd Kleinjohann, Lisa Kleinjohann

approx. 0.54 for "R" and 0.66 for the "B" thresholds as shown by Fig. 3. A
close look to the experiment showed that it is not much more difficult for the
agents to reach the "B" energy base as it is for the "R" base, although "B" is
further away. This is the case because the area in front of "R" is most of the
time occupied by another agent and thus unreachable for the agent, whereas
"B" is farer away but most of the time clear of other agents since there are
more "B" bases available.

3D00 4000 6000

tima fsl

Fig. 3. Development of the threshold adjustment through group learning. The upper
curve shows the threshold development for resource "R", the lower for "B"

The average lifetime development of the MAS is displayed in Fig. 4. We in
cluded the random policy for additional comparison. The significant data starts
at 50s - the point when the first resource is exhausted. After approximately
100 seconds the agents start to die because they have not yet learned which
action to take when the individual resources are going to be exhausted. As the
agents learn more and more at the ILL the pure RL method departs from the
random method, but as the graph suggests the parameters for the thresholds
seem not to be optimal since it performs not that much better than the random
method. The hybrid method, having RL at the policy level and group learning
as described in section 4.2 at the KEL, outperforms the pure RL version. And
this not only by the average lifetime measure, but also in the performance plot,
as can be seen in Fig. 4. It takes, however, 3000s until the hybrid version per
forms better than the pure RL version. After 5000s the difference is significant
and amounts to approx. 200 performance points at the end of the run.

One might ask why the hybrid solution does not reach a point where the
agents live eternally, since they must have found the optimum thresholds. This

Trading off Impact and Mutation of Knowledge 197

•-••/

s

f-

-

Fig. 4. The average lifetime (left) and performance (right) of the agents. Shown are
the means and error bars using 95% confidence interval.

is because of the agent's interferences in front of the resource filling stations,
which is not predictable, so that the death is always possible. The agents are
thus trading off life time with performance points. Even with both resource
thresholds set to 1.0 they would not be immune to death.

As can be seen in Fig. 4 the confidence intervals are very big. This is con
sistent with real human societies where the transmitted knowledge does not
immediately result into a sudden and clearly defined benefit. Here, a much
longer simulation interval would be needed to see the development over several
days to months. This is planned in our future work.

7 Conclusion

For Multi-Agent environments without a central intelligence and with only spo
radic communication possibilities for the individual participating agents we have
presented a method to combine the individual learning process with a new way
to integrate the learned knowledge of other participants. Based on the previous
success of the agents (their "expert state") their knowledge is weighted and
mutated. This results in a greater impact and accuracy of the knowledge of the
better performing agents. Thus we trade off the accuracy of considered to be
correct knowledge with the utility of introducing mutation for exploring knowl
edge for better performance. As shown in the experiment, it is interesting that
this can lead to solutions that are clearly not intuitive to the engineer, instead
lead to better behavior when seen with the agent's eyes.

We plan to apply this approach to our real world soccer robots: In addition to
the adaptation of the state space this also includes e.g. the individual behaviors,
the reward function and the learning rate a. Furthermore, we plan to choose the
optimal level of aggressiveness in a soccer play as seen from their perspective:
Being as aggressive as it is possible while avoiding to receive the red card would
be a nice experiment to investigate with our soccer robots Paderkicker [9].

198 Willi Richert, Bernd Kleinjohann, Lisa Kleinjohann

References

1. M. L. Lit tman L. P. Kaelbling and A. W. Moore. Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4:237-285, 1996.

2. R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, 1998.

3. M. J. Mataric. Reinforcement learning in the multi-robot domain. Autonomous
Robots, 4(l) :73-83, 1997.

4. M. Tan. Multi-agent reinforcement learning: Independent vs. cooperative learning.
In M. N. Huhns and M. P. Singh, editors, Readings in Agents, pages 487-494.
Morgan Kaufmann, San Francisco, CA, USA, 1997.

5. L. Kleinjohann W. Richert, B. Kleinjohann. Learning action sequences through
imitation in behavior based architectures. In Systems Aspects in Organic and Per
vasive Computing - ARCS 2005, number 3432 in LNCS, pages 93-107. Springer-
Verlag Berlin, 14 - 17 March 2005.

6. A. Saskevic M. Koch, W. Richert. A self-optimization approach for hybrid plan
ning and socially inspired agents. In Second NASA GSFC/IEEE Workshop on
Radical Agent Concepts, NASA Goddard Space Flight Center Visitor's Center
Greenbelt, MD, USA, 2005.

7. R. Dawkins. The Selfish Gene. Oxford University Press, Oxford, 1976.
8. S. Blackmore. The Meme Machine. Oxford University Press, 1999.
9. M. Koch B. Kleinjohann, W. Richert, P. Adelt, and S. Rose. Paderkicker.

http://paderkicker.upb.de, 2006.
10. T. Balch and R. C Arkin. Communication in reactive multiagent robotic systems.

Autonomous Robots, l (l) :27-52, 1994.
11. M. Mataric. Learning to behave socially. In SAB94: Proceedings of the third

international conference on Simulation of adaptive behavior : from animals to
animats 3, pages 453-462, Cambridge, MA, USA, 1994. MIT Press.

12. P. Riley and M. Veloso. Coaching advice and adaptation. In B. Brown
ing D. Polani, A. Bonarini and K. Yoshida, editors, RoboCup-2003: The Sixth
RoboCup Competitions and Conferences. Springer Verlag, Berlin, 2004.

13. T. S. Dahl, M. J. Mataric, and G. S. Sukhatme. Adaptive spatio-temporal orga
nization in groups of robots. In lEEE/RSJ International Conference on Robotics
and Intelligent Systems, pages 1044 - 1049, Lausanne, Switzerland, Oct 2002.

14. S. Kapetanakis and D. Kudenko. Reinforcement learning of coordination in het
erogeneous cooperative multi-agent systems. In AAMAS '04: Proceedings of the
Third International Joint Conference on Autonomous Agents and Multiagent Sys
tems, pages 1258-1259, Washington, DC, USA, 2004. IEEE Computer Society.

15. C. Claus and C. Boutilier. The dynamics of reinforcement learning in cooperative
multiagent systems. In AAAI/IAAI, pages 746-752, 1998.

16. N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E. Schapire, and
M. K. Warmuth. How to use expert advice. J. ACM, 44(3):427-485, 1997.

17. R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation RA-2, pages 14-23, 1986.

18. R. C. Arkin. Behaviour-Based Robotics. MIT Press, 1998.
19. C. J. C. H. Watkins and Dayan. Q-leaming. 1992.
20. ActivMedia. URL for the Pioneer robot: http://www.activrobots.com, 2003.
21. B. P. Gerkey, R. T. Vaughan, and A. Howard. The player/stage project: Tools for

multi-robot and distributed sensor systems. In Proceedings of the International
Conference on Advanced Robotics, pages 317-323, Coimbra, Portugal, Jul 2003.

Emergent Distribution of Operating System
Services in Wireless Ad Hoc Networks

Peter Janacik and Tales Heimfarth

Heinz Nixdorf Institute, University of Paderborn
Puerstenallee 11, 33102 Paderborn, Germany

{pjanacik, tales}9uni-paderborii.de

Abs t rac t . Despite the advances in wireless, energy-constrained ad hoc
networks, there are still many challenges given the limited capabilities
of the current hardware. Therefore, our aim is to develop a lightweight,
yet powerful operating system (OS) for these networks. We reject the
brute force method of provisioning all necessary OS services at each
node of the system. Instead, our approach aims to distribute the set of
requested OS services over the network to reduce and balance load, im
prove quality of service, increase fairness and predictability. To limit the
burden imposed on the network by the service distribution mechanism,
only a subset of nodes, the coordinators, chosen by an underlying state-
of-the-art topology control, are concerned with this task. Coordinators
observe the state of nodes and OS services within their one-hop vicinity,
i.e. their decision area, incorporating different aspects, such as energy,
utilisation, or available resources in their decisions. Although each co
ordinator acquires information and triggers migrations of service states
only locally within its decision area, a global-level result emerges, as de
cision areas naturally overlap. In this manner, an increased amount of
work load e.g. in one decision area "floats" to the surrounding decision
areas attracted by better conditions. In ns-2 simulations we demonstrate
that the mechanism of emergence, which produces many fascinating re
sults in natural systems, can successfully be applied in artificial systems
to considerably increase the efficiency and quality of OS service distri
bution.

1 Introduction

Given current hardware limitations of wireless nodes, e.g. commercial off-the-
shelf sensor nodes (see [1]), there are severe restrictions on the software executed
on them. For the same reason, operating systems (OS) for this type of nodes,
like Tiny OS [2], do not provide the means to handle more complex applica
tions. To cope with these challenges, we use the paradigm of OS service distri
bution within our lightweight, distributed operating system NanoOS [3]. The
OS consists of different services such as scheduling, synchronisation, time, etc.
Traditional OS offer the set of all needed services at every node of the system
resulting in excessive resource waste. Moreover, this limits the possible number

Please use the following format when citing this chapter:

Janacik, P., Heimfarth, T., 2006, in IFIP International Federation for Information Processing, Volume 216, Biologically
Inspired Cooperative Computing, eds. Pan, Y, Rammig, F., Schmeck, H., Solar, M., (Boston: Springer), pp. 199-208.

200 Peter Janacik and Tales Heimfarth

of OS services utilised at one node at the same time. In contrast, our approach
distributes the set of needed OS services over different nodes leading to a lower
per-node load, a greater amount of possible service types, and the option of
load adjustment. In particular, a distribution service observes the network and
initiates migrations of OS service states (associated with service requestors)
to achieve the following aims: load balancing, i.e. the uniform distribution of
load over available nodes and services, fairness, i.e. the equal treatment of
service requestors, quality of service, i.e. short answering times, and predictabil
ity of service quality. Providing these properties is a global-level aim, which is
achieved solely from numerous interactions among lower-leyel components, i.e.
the nodes. Moreover, the rules specifying these interactions are executed using
only local, i.e. one-hop, information without reference to the global pattern (or
aim). The emergent property (as defined in [4]) of our system is of utter im
portance in the scenario of volatile, energy-constrained networks: it translates
to a highly increased amount of robustness, resilience, and a considerably lower
communication overhead.

To lower the burden imposed on the network, our approach makes a sub
set of nodes, the coordinators, responsible for service distribution. This set is
chosen dynamically by an underlying state-of-the-art topology control (such as
[5, 6, 7]), so that each node has at least one coordinator in one-hop distance. Co
ordinators run a distribution service that is responsible for observing the state
of the system within their one-hop neighbourhood, i.e. their decision area, and
for deciding on the migration of OS service states. As already discussed above,
at first glance, the mechanism for service distribution is local. But given the
natural overlap of decision areas, there is also an inter-decision area migration.
This way, load can "float" to neighbouring areas, so that a global-level result
emerges. Using ns-2 [8] simulations, we demonstrate the considerable improve
ments in terms of the above-defined aims provided by our approach. We are
aware that reducing the distance between OS service requestors and providers,
efficient service discovery, or failure handling are also crucial in wireless, energy-
constrained ad hoc networks. These topics are however beyond the scope of this
document and will therefore be addressed in other publications.

This paper is organised as follows: Section 2 presents the state-of-the-art,
while Section 3 subsequently describes the proposed emergent distribution of
OS services. Section 4 then presents the results of our simulations. Finally,
Section 5 ends this paper with brief concluding remarks.

2 State-of-the-Art

Current ad hoc or sensor network node hardware imposes severe restrictions
on the software executed on top of it. Therefore, TinyOS [2] e.g. tries to solve
this problem with its extremely small footprint. But since all components of a
TinyOS instance have to fit into one node, its functionality is severely limited, so
that it cannot cope with more complex applications. The MagnetOS approach

Emergent Distribution of OS Services in Wireless Ad Hoc Networks 201

[9], as another example, is very different from most OS: its aim is to offer
a single-system image of a unified Java virtual machine (JVM) across nodes.
Migration of objects in MagnetOS is carried out over one or multiple hops in
the direction of the greatest communication, reducing the distance between call-
initiators and -receivers. Our work, however, has different aims: improving load
balancing, fairness, quality of service, and predictability. In the related field of
dynamic distributed scheduling algorithms, there has also been research on the
reduction of communication cost and load balancing. However, such approaches
like [10, 11] were developed for static networks of UNIX workstations and are not
suited for mobile, volatile, resource- and energy-constrained networks. Further,
they impose the burden of service distribution on all workstations in a network.

3 Emergent Distribution of OS Services

After providing an outline of our approach in the introduction and reviewing the
state-of-the-art, this section describes the system components and how division
of labour between nodes is employed. Subsequently, the main part of this section
concentrates on migration source and target determination.

3.1 S y s t e m C o m p o n e n t s

We assume a wireless network consisting of resource- and energy-constrained,
mobile hardware nodes. Our OS, composed of services, and applications, com
posed of tasks, run on top of it. In addition to the functionality of traditional OS,
our OS provides an uniform system call environment across the mobile nodes
and further services like a distribution service, observing the system state and
initiating migrations, or distributed event, memory, and synchronisation ser
vices. As depicted in Figure 2 (a), OS services and application tasks are subtypes
of the abstract processing entity. An OS service maintains states associated with
each of its requestors, which are sharing it and may reside on different, remote
nodes. Services may act as both, service requestors and providers, while tasks
only act as requestors.

3.2 Div is ion of Labour between N o d e s

In order to reduce the burden imposed on the network by the mechanism of
service distribution and to enable the fusion of relevant system data, we assign
the task of service distribution only to a subset of nodes, called coordinators.
This subset, created by a state-of-the-art topology control (such as [5, 7] or our
work from [6]), should consist of a low number of nodes, while ensuring that
each node has at least one coordinator in one-hop communication distance (as
depicted in Figure 1 (a)). Further, this implies that the number of coordinators
scales with the density and number of nodes. The idea of our work is that each
coordinator runs a distribution service that monitors the coordinator's decision

202 Peter Janacik and Tales Heimfarth

O ^ C h
To o o

o ^ 3 \ 9 ^ f i § 6 ^ 0^ni--,K- .•.^••_£s^

J ® 9 t ^ ^ Y ^ n Decs-.... 'vJ A^

^ o

(a) (b)

Fig. 1. Division of labour between nodes, (a) Different node types, (b) Decision areas
of coordinators and distribution service placement.

area, which contains all non-coordinators in one-hop distance. Figure 1 (b)
shows the overlapping decision areas of coordinators 1 and 2. We assume the
amount of overlap to be a tuneable parameter of topology control. Coordinator
status changes take place as reaction to changes of the environment (e.g. node
density), but also over time, so that nodes "take turns" being coordinators
balancing the burden of service distribution.

3.3 State Migrat ion Source and Target Determinat ion

Migration, initiated by the distribution service, consists of the migration of
states, which are associated with the requestors of services, between existing
OS services, but also the migration of states to newly-started OS services. Fig
ure 2 (b) illustrates a typical scenario, where migration is applied. The OS
service running at node 4 is overburdened, as indicated by the service request
queue length. At the same time, the OS services at nodes 3 and 5 are almost idle
increasing the overall execution overhead. To improve the configuration, some
OS service states from the service at node 4 would be migrated to the service
at node 6. The services at nodes 3 and 5 would be fused, on the other hand, by
migrating all states from one to the other service. To be more concrete, the mi
gration decision policy (intuitively speaking) has the following main operational
goals: First, prevent too long service request queues; second, disburden services
at nodes, whose remaining energy level is considerably below the average en
ergy level of nodes in the decision area of the coordinator; moreover, avoid the
execution of services with very short queues, since these do not justify the asso
ciated overhead and hold resources which may prevent the start of new services.
To enable migration decisions, every distribution service is provided with the
information utilised in the descriptions below from all nodes and services in its
coordinator's decision area (by underlying protocols).

In our model, we assume the utilisation of a service to be indicated by the
average length of its queue for pending service requests in terms of processing
time needed. For the sake of simplicity, we will only refer to it as (service

Emergent Distribution of OS Services in Wireless Ad Hoc Networks 203

lilt
too o ~ i OS service

. instance
Processing Entity

I
Task

T
(b s Service)*—

rEvenM m i e Systern)

Task
instance

(a) (b)

Fig. 2. Processing entities, (a) Relationship between processing entity and its sub
classes, (b) Distribution of processing entities over the network, illustrating a problem
scenario. Key: DS—distribution service

request) queue length below. In order to enable decisions based on the degree of
utilisation, our approach distinguishes the following categories of service request
queue lengths (see also Figure 2 (b)):

Short: Low utilisation
Open: Fair utilisation
Closed: Fair or slightly higher utilisation, rejecting new requestors
Long: Critically high utilisation, rejecting new requestors

There are different "priority classes to characterise the severity of the problem
at the migration source (according to the policy described above): (1) Long
queue; (2) queue open or closed and energy low at hosting node; (3) queue
short. For an additional, more fine granular ranking within priority classes, we
use the following OS service fitness metric that rates the service incorporating
the hosting node, e.g. whether the service load is appropriate and the host's

resources a re not e x h a u s t e d : Mservice^}itness = I^CPU • McPU + ^mem • Mmem +

uiqi • Mqi + uiE • ME- It uses metrics taking into account CPU and memory util

isation^ M{cpu,mem} = Zlxlicpu'memi describing the proportion of available

to maximum resources, the queue length metric Mqi = 1 — iiiin(-j—^—— ,1)

reflecting the relation of the actual queue length to the minimum long queue

length, and the energy metric

ME = 1 - -Eho
if

else
Ehcst > Eavrg.decision,area

describing the proportion of remaining energy at the host to the average amount
of remaining energy at nodes in the decision area, uicpu-, <^mem, '^qU a-nd WB are

' Different members of sets exclude each other in the following formula.

204 Peter Janacik and Tales Heimfarth

weights for the corresponding metrics, such that UJCPU +i^mem +'^qi + ws = 1.
They can be adjusted in order to reflect characteristics of a certain hardware
type, e.g. uJmem can be increased if memory is the more valuable resource.
Moreover, the above functions use avaiL{CPU,mem}, reflecting the amount
of available CPU and memory resources, max-{CPU, mem}, describing the
maximum available corresponding resources at a node, qkong-min represents the
minimum queue length for the "long" category and ql the actual service request
queue length. Eavrg-dedsion-area Contains the average of remaining energy levels
in the decision area, whereas Ehost describes the remaining energy level of the
service host.

The service in the highest priority class with the lowest Mgervice-fitness
ranking is chosen first as migration source. In order to reduce interference of
overlapping decision areas, only a distribution service at a coordinator, which
is connected to a non-coordinator with the best link from all links connecting it
to surrounding coordinators, may choose a service from such a non-coordinator
as migration source.

Finding a migration target works similar to the migration source finding
process, but using the following priority classes: (1) Open queue and sufficient
energy at hosting node; (2) short queue; (3) no service running at hosting node.
Priority class 3 is only an option, if the queue length of the migration source
is above the minimum long queue length, so that near-idle services are not mi
grated unnecessarily. The decision process proceeds similar to finding a source,
except that the whole decision area is taken into account. The service in the
highest priority class with the highest Mservice-fitness ranking is chosen first
as migration target. After migration initiation, migration source and target are
locked, excluding them from the migration process for a specified period of time
in order increase the stability of the system.

4 Results

We implemented our emergent distribution of OS services and a reference ap
proach using C-I--1- and the ns-2 network simulator [8]. For lower layers, we
used our topology control [6] and ant colony-based routing [12]. The reference
approach employs a greedy, demand-based OS service placement without ser
vice migration and topology control, in conjunction with ad hoc on-demand
distance vector (AODV) [8] routing from ns-2. To simulate running processing
entities (PE), we specified a set of P E types. For each P E type, a recurring
sequence of behaviour items is defined. Each behaviour item includes informa
tion on its execution duration, CPU, memory, and OS service requirement (a
service type or none), as well as, the processing time needed by the required OS
service. The assignment of application task instances to PE types and nodes
was randomised.

The simulations further employed a 914 MHz Lucent WaveLAN DSSS radio,
the two-ray ground reflection model, 80 joules initial energy per node and an

Emergent Distribution of OS Services in Wireless Ad Hoc Networks 205

0) c
O o P o

3 CO

' S IB CO Q.

0.6

0.5

0.4

0.3

0.2

0.1

0.0

A Reference - " Average
° Emergent =•= Conf. int.

I '1*

0.5

18

is
8 fc
3--•?

0.4

0.3

0.2

C O 0.1
LU Q-

0.0

-

a: ;

1

At 1 <§« .S

1 • 1 1 : 1 1

G R GFI RFI

(a)

GFI RFI

(b)

Fig. 3. Performance (a) and energy results (b). Key: G—grid, R—RPGM, FI—failure
injection

802.11b MAC protocol, provided by ns-2. To cover static and dynamic scenarios
we used two settings: (1) A grid, 44 nodes, 3 x 15 arrangement, horizontal and
vertical distance of d = 25 m between nodes, 1000 s simulation time; (2) a
reference point group mobility (RPGM) model [13], 64 nodes, 4 x 16 groups,
logical group centres movement 2-8 m/s based on random walk model [8], 850
X 850 m area, 900 s simulation time. In order to simulate volatile and failure-
prone networks, we injected failures during simulation. Our failure injection
(FI) model employs k failure points (FP) /i,...,fc. At the start of a run, FP
probabilities p/i,..,,fc are set randomly between Pmin and Pmax- Next, each node
makes a probabilistic decision based on p/^ ^, whether to fail at F P /i,...,fc.
Each FP fi is associated with a failure time tf^ in ascending temporal order, so
that for some i G 1,... ,k, tf. < tf._^^ applies. Failing at an FP fi means for a
node that its network interface is out of order between i/j and i/^+i. A failure
at the last F P (i = k) persists until the end of the simulation. We used two FP
{k = 2) and failure times (i/j ^) at 333 and 667 seconds of simulation time. The
minimum FP probability {Pmin) was set to 0, the maximum (pmax), to 0.5.

The presented figures were obtained using the following settings: 100 runs,
reference and emergent approach, grid and RPGM topology, with and without
FI; lower and upper bounds of confidence intervals, with probability of error
a = 0.05, to indicate the significance of the presented results (marks for not
applicable or too narrow intervals for a reasonable visualisation are omitted).

4.1 Performance and Energy Consumpt ion

Figure 3 (a) depicts the processing speed of both approaches. The emergent
approach outperforms the reference approach by a clear margin, which is also
an indication for a higher quality of service. The energy consumed by both
approaches is depicted in Figure 3 (b). Again, the emergent approach clearly
outperforms its reference counterpart. FI does not influence energy consump
tion considerably, possibly, since the failed nodes do not actively participate

206 Peter Janacik and Tales Heimfarth

40

30

^ 20

10

A Reference -~ Average
0 Emergent =: Conf. int.

^1 , ,

- 1,

13L
G

^

*

R

s

'i

'>f

T *̂ J.

G Fl R Fl

« •

1
i
§

1
f

«.U

6.0

4.0

2.U

0.0

-

-
X

G

tJ

R GFI

1 i

RFI

(a) (b)

(0)

II
S 2

800 1000
Bucket end time (s)

(d)

Fig. 4. Load balancing, fairness, quality of service, predictability (a-c) and migration
behaviour (d) results. Key: G—grid, R—RPGM, Fl—failure injection

in communication, thus saving the corresponding amount of energy. Further,
the figure clearly demonstrates that the variance of energy consumption of the
emergent approach is intelligibly lower, which is also an indicator for a higher
predictability.

4.2 Load Balancing, Fairness, Quality of Service, Predictabi l i ty

Quality of service depends on service request queue lengths in general, whereas
load balancing, fairness, and predictability depend on the uniform distribu
tion of queue lengths throughout the system. Therefore, our next studies are
focused on these indicators. Figure 4 (a) depicts the number of long service
request queues (i.e. "which are in the long category") per node in each of the
runs. Measurements were taken at service reply issuing. Evidently, the number
of long queues in the reference approach is several times higher. Nevertheless,
some RPGM Fl runs for the reference approach exhibit a very low number of
long queue lengths. This is supposedly owed to the reference approach, starting
a high number of services that are utilised only to a minimum extent, which
increases overhead and prevents new services from being started. In contrast to

Emergent Distribution of OS Services in Wireless Ad Hoc Networks 207

the reference approach, the figures for the emergent approach appear to stay
constantly low with only little variance, indicating good quality of service and
a high predictability. Further, the high amount of long queues in the reference
approach hints at the lack of fairness: some service requestors are served signif
icantly slower than others, which greatly affects, and leads to high variances of
service requestors' own processing speeds.

Looking at average queue lengths in Figure 4 (b), the conclusions are similar,
but the averages of both approaches are more close-by. This could be explained
as above by reference service distribution starting a high number of little-utilised
services. Emergent service distribution, in contrast, at tempts to avoid running
near-idle services in order to minimise overhead and provide enough room for
the start of new services. This is, however, to its disadvantage in this particular
metric. The results for service response times in Figure 4 (c) additionally take
into account communication delays and are very similar to the figures in (a).

4.3 Reac t ion Behaviour and Stabil ity of Migrat ion

Figure 4 (d) depicts the migration activity in a grid topology. Migration times
encountered are sorted into buckets of 10 seconds. All runs exhibit an initial
peak, reflecting initial optimisations. Without FI, migration settles down there
after, yielding a highly stable solution for the rest of the simulation. If however
the need for optimisations is brought about by FI at 333 and 667 seconds, mi
gration reacts swiftly shortly after the occurrences, settling down subsequently
leading to a stable solution.

5 Conclusion

Within the scope of our efforts to create a lightweight, yet powerful operating
system (OS) for wireless, energy-constrained nodes, this paper introduces an
efficient method for the distribution of OS services. Our approach only imposes
load on a selected subset of nodes, the coordinators. They observe the state of
the system locally within their decision areas. Given the natural overlap of these
areas, when one decision area suffers e.g. under high load, this load "floats" to
the surrounding areas attracted by better conditions. Therefore, although each
coordinator acquires information and triggers migrations of service states only
locally, there is an emergent global result.

Given the restrictions of current hardware, an efficient distribution method
is crucial for our OS. Even more, we strive to provide an OS behaviour that
is rather associated with OS which exhibit a much larger footprint: load bal
ancing, fairness, and predictability, combined with a high quality of service.
Using ns-2 simulations we show that our approach reduces energy consumption
by a significant amount compared to a reference system. Further, quality of
service is increased by more than 80 % in most cases, while load balancing is
improved by 200 to 400 % exhibiting a low deviation from the average values.

208 Peter Janacik and Tales Heimfarth

This in particular results in considerably improved fairness and predictability.
The state obtained by the proposed mechanism is characterised by stability and
swift adjustment to changes in the environment at the global level, emerging
from execution of solely local actions based on local information. Concludingly,
the observations give yet another piece of evidence that emergence as a mecha
nism often encountered in nature can be transferred to computer systems while
preserving its inherent character.

References

1. The Scientist and Engineer's Guide to TinyOS Programming, http://ttdp.org
/tpg/html/book/bookl.htm, accessed January 7, 2006.

2. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister. System
architecture directions for networked sensors. In Proc. of ACM ASPLOS, pages
93-104, Cambridge, MA, November 2000.

3. F. J. Rammig, M. Goetz, T. Heimfarth, P. Janacik, and S. Oberthuer. Real
time operating systems for self-coordinating embedded systems. In Proc. of IEEE
ISORC, Gyeongju, Korea, April 2006. Accepted for pubUcation.

4. S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, and
E. Bonabeau. Self-Organization in Biological Systems. Princeton Studies in Com
plexity. Princeton University Press, first edition, 2003.

5. A. Cerpa and D. Estrin. ASCENT: Adaptive self-configuring sensor networks
topologies. IEEE TMC, 3(3):272-285, 2004.

6. P. Janacik, T. Heimfarth, and F. Rammig. Emergent topology control based on
division of labour in ants. In Proc. of IEEE AINA, Vienna, Austria, April 2006.

7. F. Ye, G. Zhong, J. Cheng, S. Lu, and L. Zhang. PEAS: A robust energy con
serving protocol for long-lived sensor networks. In Proc. of IEEE ICDCS, pages
28-37, Providence, RI, May 2003.

8. The network simulator, http://www.isi.edu/nsnam/ns/, accessed July 8, 2005.
9. R. Barr, J. C. Bicket, D. S. Dantas, B. Du, T. W. D. Kim, B. Zhou, and E. Giin

Sirer. On the need for system-level support for ad hoc and sensor networks. ACM
SIGOPS OS Review, 36(2):l-5, April 2002.

10. H.-U. Heiss and M. Schmitz. Decentralized dynamic load balancing: The particles
approach. Information Sciences, May 1995.

11. C. Lang, M. Trehel, and P. Baptiste. A distributed placement algorithm based
on process initiative and on a limited travel. In Proc. of PDPTA, 1999.

12. P. Janacik, O. Kao, and U. Rerrer. An approach combining routing and resource
sharing in wireless ad hoc networks using swarm-intelligence. In Proc. of the
ACM/IEEE MSWiM, pages 31-40. CTi Press, 2004.

13. X. Hong, M. Gerla, G. Pei, and C.-C. Chiang. A group mobility model for ad hoc
wireless networks. In Proc. of ACM/IEEE MSWiM, August 1999.

Author index

Avizienis, Algirdas 1
Azzag, Hanene 33
Bauer, Bemhard 55
Bemauer, Andreas 107
Bouajila, Abdelmajid 107
Bringmann, Oliver 107
Cebulla, Michael 65
Cuadros-Vargas, Ernesto 95
Da Costa, David 33
Du, JiaLei 179
Dynia, Miroslaw 137
Florez-Choque, OmarU 95
Giese, Holger 157
Goebels, Andreas 125
Griese, Bjom 115
Guinot, Christiane 33
Haase, Jan 169
Heimfarth, Tales 75, 199
Herkersdorf, Andreas 107
Hinchey, Michael G 7, 43
Hofmann, Andreas 169
Janacik, Peter 75, 199
Kasinger, Holger 55
Kleinjohann, Bemd 189
Kleinjohann, Lisa 189
Kutylowski, Jaroslaw 137
Lorek, Pawel 137
Margaria, Tiziana 43
Meyer auf der Heide, Friedhelm 137
Montealegre, Norma 157
MiJller, Thomas 157
Oberthur, Simon 157
Porrmann, Mario 115
Raffelt, Harald 43
Rash, James L 43
Ratsimba, David 33
Richert,Wini 189
Rosenstiel, Wolfgang 107
Rouff, Christopher A 43
Ruckert, Ulrich 179
Schmidt, Andreas 147
Schulz, Bemd 157
Steffen, Bemhard 43
Sterritt, Roy 7

210

Tanoto, Andry 179
Thiemann, Tobias 85
Trumler, Wolfgang 85
Ungerer, Tlieo 85
Venturrini, Gilles 33
Waldschmidt, Klaus 169
White, Steve R 21
Witkowski, Ulf 179

